期刊文献+

一种动态联盟企业风险概率识别方法 被引量:2

Method to Identify Risk Probability of Virtual Enterprise
下载PDF
导出
摘要 根据动态联盟企业信息具有不确定性的特点,应用贝叶斯网络对企业的风险概率进行识别.通过对贝叶斯网络的构建与分析方法的探讨,用贝叶斯网络描述企业信息变量间的依赖关系,从而识别不同风险发生的概率.仿真结果表明,贝叶斯网络可以有效地描述动态联盟企业不确定信息变量之间的依赖关系,是进行风险概率识别的一种有效方法. According to the uncertain characteristics of information in virtual enterprise, the Bayesian network is used to identify its risk probability. Discussing the way to construct and analyze the Bayesian network, the dependency relationship of various information variables of such an enterprise is described with Bayesian network, so as to identify the different risk probabilities. Simulation results suggested that Bayesian network could effectively describe the dependency relationship of the uncertain information variables of a virtual enterprise, i.e., an effective method to identify risk probability.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第12期1138-1140,共3页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(70101006 70431003 60473089 60003006) 辽宁省自然科学基金资助项目(20032018 20032019) 教育部现代远程教育工程资助项目 沈阳市自然科学基金资助项目(1041006-1-03-03) 教育部暨辽宁省流程工业综合自动化重点实验室开放课题
关键词 动态联盟企业 风险管理 风险识别 风险概率 贝叶斯网络 不确定性 virtual enterprise risk management risk identification risk probabilit y Bayesian network uncertainty
  • 相关文献

参考文献11

  • 1黄敏,杨红梅,王兴伟.基于遗传算法和模糊综合评价的虚拟企业风险规划(英文)[J].自动化学报,2004,30(3):449-454. 被引量:20
  • 2黄敏,李凤娥,王兴伟.基于PERT的虚拟企业风险评价模型[J].东北大学学报(自然科学版),2005,26(9):860-863. 被引量:9
  • 3Glymour C, Madigan D, Pregibon D, et al. Statistical themes and lessons for data mining[J]. Data Mining and Knowledge Discovery, 1997,1(1):11-28.
  • 4Heckerman D, Geiger D, Chickering D M. Learning Bayesian networks: the combination of knowledge and statistical data[J]. Machine Learning, 1995,20(3):197-243.
  • 5Taskar B, Segal E, Koller D. Probabilistic classification and clustering in relational data[A]. Proceedings Seventeenth International Joint Conference on Artificial Intelligence[C]. San Francisco: Morgan Kaufmann, 2001.870-876.
  • 6韩家炜 数据挖掘.概念与技术[M].北京:机械工业出版社,2001..
  • 7Cheng J, Bell D A, Liu W. An algorithm for Bayesian belief network construction from data[A]. Proceedings of AI & STAT'97[C]. Lauderdale, 1997.83-90.
  • 8Cheng J. Learning Bayesian networks from data: an information theory based approach[A]. Doctoral Dissertation[C]. Belfast, 1998.195-212.
  • 9Cooper G F, Herskovits E. A Bayesian method for the induction of probabilistic networks from data[J]. Machine Learning, 1992,9:309-347.
  • 10Chickering D M, Heckerman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables[J]. Machine Learning, 1997,29(2-3):181-212.

二级参考文献11

  • 1Hallikas J, Virolainen V M, Tuominen M. Risk analysis and assessment in network environments: a dyadic case study[J ].International Journal of Production Economics, 2002, 78(1):45 -55.
  • 2甘应爱 田丰 李维铮.运筹学[M].北京:清华大学出版社,1996.288-299.
  • 3Wackerly D D, Mendenhall W, Scheaffer R L. Mathematical statistics with applications [ M ]. Calif: Daxbury, 2002. 261-270.
  • 4Park K H, Favrel J. Virtual enterprise-information system and networking solution [ J ]. Onnputers and Industrial Engineering, 1999,37 ( 1 ) : 441 - 444.
  • 5Makatsoris C, Leach N P, Richards H D, et al. Addressing the planning and eontrol gaps in semiconductor virtual enterprises [A]. Proceedings of the Conference on Integration in Manufacturing[C]. Ireland: Galway, 1996.117 - 129.
  • 6Martinez M T, Fouletier P, Park K H, et al. Virtual enterprise-organization, evolution and control [ J ].International Journal of Production Economics, 2001,74( 1-3) : 237 - 250.
  • 7Ip W H, Huang M, Yung K L, et al. Genetic algorithm solution for a risk-based partner selection problem in a virtual enterprise [ J ]. International Journal of Computers & Operations Research, 2003,30(2):213-231.
  • 8Hallikas J,Harvonen I,Pulkkinen U,et al.Risk management processes in supplier networks [ J ]. International Journal of Production Economics, 2004,90 ( 1 ) : 47 - 58.
  • 9代冀阳,张建刚,毛剑琴.基于遗传算法的模糊树建模方法[J].自动化学报,2000,26(5):707-710. 被引量:5
  • 10李帅,郭亚军,易平涛,田厚平.基于模糊群决策的虚拟企业合作伙伴选择[J].东北大学学报(自然科学版),2004,25(3):295-298. 被引量:27

共引文献33

同被引文献13

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部