期刊文献+

基于平行坐标的关联规则可视化新技术 被引量:5

A New Technique for Visualizing Association Rules Based on Parallel Coordinates
下载PDF
导出
摘要 详细讨论了用于关联规则可视化的几种常用技术,分析了各自的优缺点。提出了关联规则可视化的一种新方法ARVir,该方法巧妙地利用平行坐标技术的思想,对原有的可视化技术进行改进,能够解决当前关联规则可视化技术中普遍存在的界面紊乱、产生歧义等多种问题。利用Java3D技术实现了基于ARVir的关联规则可视化系统原型,实验表明该系统不仅能够有效地显示大量关联规则,而且用户可以给定约束条件对挖掘结果进行过滤。 This paper discusses several useful techniques which are usually used to visualize association rules with the advantages and disadvantage of each technique presented, and then introduces a novel method ARVir which ingeniously improving parallel coordinates technology to visualize association rules. The method ARVir is an improvement over those existed visualization techniques and can tackle many of common problems such as occlusion and confusion in the visualizing process. A system for visualizing association rules based ARVir is implemented with Java3D. The system not only efficiently visualizes abundant association rules, but also filters the mined results by constraint condition.
出处 《计算机工程》 EI CAS CSCD 北大核心 2005年第24期87-89,共3页 Computer Engineering
基金 江苏省自然科学基金资助项目(BK2005135) 江苏省重点实验室开放基金资助项目(KJS03064)
关键词 关联规则 可视化 数据挖掘 Association rule Visualization Data mining
  • 相关文献

参考文献8

  • 1Wong P C, Whitney P, Thomas J. Visualizing Association Rules for Text Mining[C]. In: Proc. of the 1999 IEEE Symposium on Information Visualization, Richland, USA, 1999:120-123.
  • 2Ong K H, Ong K L, Ng W K, et al. Crystalclear: Active Visualization of Association Rules[C]. In: International Workshop on Active Mining, in Conjunction with IEEE International Conference on Data Mining, Maebashi, Japan, 2002-12.
  • 3Hofmann H, Siebes A, Wilhelm A. Visualizing Association Rules with Interactive Mosaic Plots[C]. In: Proc. of 6th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, Boston, USA,2000-08:227-235.
  • 4Yang L. Visualizing Frequent Itemsets, Association Rules, and Sequential Patterns in Parallel Coordinates[C]. In: Proc. of Int'l Conf.Computational Science and Its Applications, Montreal, Canada,2003-05:21-30.
  • 5Yang L. Pruning and Visualizing Generalized Association Rules in Parallel Coordinates[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(1): 60-70.
  • 6Techapichetvanich K, Datta A. VisAR: A New Technique for Visualizing Mined Association Rules[C]. In: Proc. of 1st Int'l Conf.Advanced Data Mining and Applications, 2005:88-95.
  • 7Hetzler B, Harris W M, Havre S, et al. Visualizing the Full Spectrum of Document Relationships[C]. In: Proc. of 5th Int'l Conf. Society for Knowledge Organization. Wurzburg, Verlag, 1998:168-175.
  • 8Techapichetvanich K, Datta A. Visual Mining of Market Basket Association Rules[C]. In: Proc. of 2004 Int'l Conf. Computational Science and Its Applications, Assisi, Italy, 2004-05:479-488.

同被引文献33

  • 1王见,郭娜,陈晓云.VisualDM:一个灵活的可视化数据挖掘系统[J].计算机工程与科学,2005,27(5):39-41. 被引量:3
  • 2郭迅华,陈国青.基于XML的通用关联规则挖掘应用模式[J].管理工程学报,2005,19(4):53-59. 被引量:4
  • 3张文,胡俊.基于平行坐标技术的关联规则可视化模型[J].北京交通大学学报,2006,30(2):93-96. 被引量:2
  • 4王锐,李晶,熊海蕴,绳鹏.基于关联规则的Apriori算法的可视化实现方法[J].计算机工程与设计,2007,28(4):757-759. 被引量:9
  • 5Wong Pak Chung, Whitney P, Thomas J. Visualizing Association Rules for Text Mining[C]//Proceedings of the 1999 IEEE Symposium on Information Visualization. Richland, USA: [s. n.], 1999: 120-123.
  • 6Hetzler B, Harris W M, Havre S, et al. Visualizing the Full Spectrum of Document Relationships[C]//Proceedings of the 5th Int'l Conf. of Society for Knowledge Organization. Wurzburg, France: Verlag, 1998: 168-175.
  • 7Li Yang. Visualizing Frequent Itemsets, Association Rules, and Sequential Patterns in Parallel Coordinates[C]//Proceedings of Int'l Conf. on Computational Science and Its Applications. Montreal, Canada:[s. n.], 2003: 21-30.
  • 8Li Yang. Pruning and Visualizing Generalized Association Rules in Parallel Coordinates[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(1): 60-70.
  • 9Han Jiaochan, Cercone N. RuleViz: A Model for Visualizing Knowledge Discovery Process[C]//Proceedings of KDD'00. Boston, USA: [s. n.], 2000: 244-253.
  • 10Agrawal R, Imielinski T, Swami A. Mining Association Rules Between Sets of Items in Large Databases[C]//Proceedings of the ACM SIGMOD Int'l Conf. on Management of Data. Washington, USA: [s. n.], 1993: 207-216.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部