期刊文献+

浮游植物细胞图像识别方法的研究 被引量:9

Study of Recognition Method of Phytoplankton Cell Image
下载PDF
导出
摘要 讨论了如何利用数学形态学方法提取浮游植物细胞图像的面积(A)、周长(P)以及通过图像细化提取细胞的长(L)等特征信息;提出了利用这3个特征参数的比值(A/P,A/L和P/L)形成的特征向量作为进行细胞分类的依据,然后提出了利用最近邻准则对浮游植物进行自动识别的试探聚类算法,该方法可以通过学习提高识别率。通过对17种浮游植物细胞图像的识别实验,证明了该方法的识别准确率在95%以上,可以有效预防大面积赤潮的发生,对于赤潮爆发后的鉴定也有一定意义。 This paper talks about how to compute the phytoplankton cell image's area (A) and perimeter (P) using the mathematical morphology method, and how to calculate the length (L) and other characteristic information using the image thinning method; puts forward a way to classify the phytoplankton cell by the eigenvector which consists of the specific value of three choJ'acteristic parameters, such as A/P,A/L and P/L; then presents a tentative auto-recognizing clustering method of the phytoplankton using the nearest neighbor rule, and the method may enhance the recognition ratio through learning. According to the recognition experiments of 17 sorts of the phytoplankton cell image, the recognition rate of this method is over 95%. This method could effectively prevent the extensive area red tide and should have significance to identify the red tide that has broken out.
出处 《计算机工程》 EI CAS CSCD 北大核心 2005年第24期143-144,155,共3页 Computer Engineering
基金 国家"863"计划基金资助项目(2001AA636030) 山东省自然科学基金资助项目(Y2000G03)
关键词 赤潮 浮游植物 数学形态学 图像细化 最近邻准则 Red tide Phytoplankton Math morphology Image thinning Nearest neighbor rule
  • 相关文献

参考文献5

二级参考文献13

  • 1Zhan X S, Ning X B, Yin Y L, et al. An improved point pattern algorithm for fingerprint matching.Journal of Nanjing University (Nantural Sciences), 2003,39(4):491-498.
  • 2Tan T Z, Ning X B, Yin Y L, et al. Arithmetic for singularity detection based on multilevel block sizes and shifting in fingerprint images. Journal of Nanjing University (Natural Sciences), 2003,39(4):460-467.
  • 3Tan T Z, Ning X B, Yin L Y, et al. A Fingerprint matching algotithrn based on certer point of the finger-pint. Journal of Nanjing University (Natural Sciences), 2003,39 (4) : 483 - 490.
  • 4Feng X K, Li L Y, Yah Z Q. A new fingerprint thinning algorithm. Journal of Images and Graphics,1999, 4A(10): 835--838.
  • 5Yu S S, Tsai W H. A new thinning algorithm for gray-scale images by the relaxation technique. Pattern Recognition, 1990, 23(10): 1 067--1 076.
  • 6Datta A, Parui S K. A robust parallel thinning algorithm for binary images. Pattern Recognition, 1994,27(9): 1 181--1 192.
  • 7Lawrence O G. K × K thinning. Computer Vision, Graphics and Image Processing, 1990, 51: 195--215.
  • 8Yin Y L, Ning X B, Zhang X M. Development and application of automatic fingerprint identification technology. Journal of Nanjing University (Natural Sciences), 2002, 38(1) : 29--35.
  • 9Zhan X S, Ning X B, Yin Y L, et al. The algorithm for distilling fingerprint orientation in the multi-letel bfock size. Journal of Nanjing University (Natural Sciences), 2003, 39(4) :476--482.
  • 10洪继光,自动化学报,1984年,10卷,1期,22页

共引文献58

同被引文献111

引证文献9

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部