期刊文献+

具有相容辛结构的四维Thurston几何(英文)

4-dimensional Thurston Geometries with Compatible Symplectic Structures
下载PDF
导出
摘要 证明在11种不具有相容K ah ler结构的四维T hurston几何中只有N il3×E1,N il4和So l3×E1有相容辛结构.作为推论重新得到一些非K ah ler或非复辛流形的例子. It is proved that among the 11 kinds of 4-dimensional Thurston geometries without compatible Kahlerian structures only Nil^3 × E^1, Nil^4 and Sol^3 × E^1 have compatible symplectic structures. As a corollary, some well-known examples of nonkahlerian or noncomplex symplectic manifolds are recovered.
作者 黄红
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第5期70-73,共4页 Acta Scientiarum Naturalium Universitatis Nankaiensis
关键词 4维流形 Thurston几何 辛结构 4-manifolds Thurston geometry symplectic structure
  • 相关文献

参考文献7

  • 1Wall C T C. Geometries and Geometric Structures in Real Dimension 4 and Complex Dimension 2[M]. Lecture Notes in Mathematics 1167, Berlin: Springer-Verlag, 1985.
  • 2Wall C T C. Geometry structures on compact complex analytic surfaces[J]. Topology, 1986, 25:119-153.
  • 3Ratcliffe J. Foundations of Hyperbolic Manifolds[M]. Berlin:Springer-Verlag, 1994.
  • 4Patrangenaru V. Classifying 3 and 4 dimensional homogenous Riemannian manifolds by Cartan triples[J]. Pacific J Math, 1996, 173:511-532.
  • 5Cordero C A, Fernandez M, Gray A. Symplectic manifolds with no Kahler structure[J]. Topology, 1986,25:375-380.
  • 6Thurston W. Some simple examples of symplactic manifolds[J]. Proc Amer Math Soc, 1976, 55:467-468.
  • 7Fernandez M, Gotay M, Gray A. Compact, parallelizable four-dimensional symplectics and complex manifolds[J].Proc Amer Math Soc, 1988, 103:1209-1212.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部