具有相容辛结构的四维Thurston几何(英文)
4-dimensional Thurston Geometries with Compatible Symplectic Structures
摘要
证明在11种不具有相容K ah ler结构的四维T hurston几何中只有N il3×E1,N il4和So l3×E1有相容辛结构.作为推论重新得到一些非K ah ler或非复辛流形的例子.
It is proved that among the 11 kinds of 4-dimensional Thurston geometries without compatible Kahlerian structures only Nil^3 × E^1, Nil^4 and Sol^3 × E^1 have compatible symplectic structures. As a corollary, some well-known examples of nonkahlerian or noncomplex symplectic manifolds are recovered.
出处
《南开大学学报(自然科学版)》
CAS
CSCD
北大核心
2005年第5期70-73,共4页
Acta Scientiarum Naturalium Universitatis Nankaiensis
参考文献7
-
1Wall C T C. Geometries and Geometric Structures in Real Dimension 4 and Complex Dimension 2[M]. Lecture Notes in Mathematics 1167, Berlin: Springer-Verlag, 1985.
-
2Wall C T C. Geometry structures on compact complex analytic surfaces[J]. Topology, 1986, 25:119-153.
-
3Ratcliffe J. Foundations of Hyperbolic Manifolds[M]. Berlin:Springer-Verlag, 1994.
-
4Patrangenaru V. Classifying 3 and 4 dimensional homogenous Riemannian manifolds by Cartan triples[J]. Pacific J Math, 1996, 173:511-532.
-
5Cordero C A, Fernandez M, Gray A. Symplectic manifolds with no Kahler structure[J]. Topology, 1986,25:375-380.
-
6Thurston W. Some simple examples of symplactic manifolds[J]. Proc Amer Math Soc, 1976, 55:467-468.
-
7Fernandez M, Gotay M, Gray A. Compact, parallelizable four-dimensional symplectics and complex manifolds[J].Proc Amer Math Soc, 1988, 103:1209-1212.