期刊文献+

非对称核密度估计在生命表构造中的应用 被引量:3

Application of Non-symmetric Kernel Density Estimation in Life-table Construction
下载PDF
导出
摘要 针对以地称核修匀方法存在着边界偏差这种现象,将非对称核密度估计用于生命表数据修匀中,提出了非对称核修匀方法,并与对称核修匀方法进行比较,得到了令人满意的结果,从而使核修匀方法得到了进一步的推广. Graduation is a necessary technology in life-table construction. Non-symmetric kernel density estimation is first used for life-table graduation in order to solve boundary hais of symmetric kernel used in the standard kernel density estimator, and compare the symmetric kernel graduation with non-symmetric kernel graduation and ohtain the satisfied result. Thereby go step further to develop kernel graduation method.
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第6期47-52,共6页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 国家自然科学基金资助项目(10171051) 国家社会科学基金资助项目(03BTJ014)
关键词 对称核修匀 非对称核修匀 Gamma核 边界偏差 symmetric kernel graduation non-symmetric kernel graduation Gamma kernel boundary bias
  • 相关文献

参考文献7

  • 1Dick London. Graduation: The Revision of Estimates[M]. U S: ACTEX Publications Inc, 1985.
  • 2Robert L Brown. Mathematics of Demography[M]. U S: ACTEX Publications Inc, 1985.
  • 3Silverman B W. Density Estimation for Statistics and Data Analysis[M]. London New York: Chapman and Hall,1986.
  • 4Copas J B, Haberman S. Non-parametyic graduation using kernel methods [J]. Journal of the Institute of Actuaries,1983, 110:135~156.
  • 5John Gavin, Steven Haberman, Richard Verrall. Moving weighted average graduation using kernel estimation[J].Insurance: Mathematics and Economics, 1983, 12:113 ~ 126.
  • 6Song Xichen. Probability density function estimation using Gamma kernels[J]. Ann Inst Statist Math, 2000, 52(3):471~480.
  • 7Brown B M, Chen S X. Beta-Bernstein smoothing for regression curves with compact supports[J]. Scand J Statist,1999, 26: 47~59.

同被引文献13

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部