期刊文献+

基于项目序列集操作理论的关联规则的挖掘算法

Association Rules'Mining Architecture Based on Operating Theory of Itemsequences Set
下载PDF
导出
摘要 在关联规划挖掘理论研究上,首次给出了项目序列集格空间,并且探讨了在这个空间上的基本操作算子、基于项目序列集格空间及其操作,建立了关联规则挖掘模型.在关联规则挖掘算法方面,设计了基于项目序列集操作理论的关联规则挖掘算法SIS,该算法执行时间整体上优于Apriori算法,而且随着数据量的增大,该算法执行时间的增长幅度也小于Apriori算法. This paper puts forward set of itemsequences space under the study of assosiation rules, discusses the basis operator, and its operating in the space based on the set of itemsequences, estabilishes mining mode of assosiation rules. In association rule mining, we first define Set of Itemsequences and give some operators on this algebra lattice. Applying such theoretic results, we design an algorithm - SIS for mining association rules, which is more efficient with one pass to the database and without large candidates generated and stored than Apriori. With mining large - scale databases, it is a more smart strategy to reduce data capability than current one like Apriori.
出处 《兰州工业高等专科学校学报》 2005年第4期20-24,共5页 Journal of Lanzhou Higher Polytechnical College
关键词 数据挖掘 关联规则 项目序列集 data mining association rules set of itemsequences
  • 相关文献

参考文献10

  • 1George M.Marakas,Modern Data Warehousing,Mining,and Visualization:Core Concepts[M].Canada:Pearson Education.,2004.
  • 2Paolo Giudici,Applied Data Mining:Statistical Methods for Business and Industry[M].USA:John Wiley & Sons,2004.
  • 3Gordon S.Linoff Michael J.A.Berry,Mining the Web:Transforming Customer Data into Customer Value[M].USA:John Wiley & Sons Inc,2004.
  • 4Tom Soukup,Ian Davidson,Visual data Mining:Techniques and Tools for Data Visualization and Mining[M].USA:John Wiley&Sons,2004.
  • 5Ryszard S.Michalski,Machine Learning and Data Mining:Methods and Applications[M].USA:John Wiley&Sons,2004.
  • 6Richard J.Roiger,Michael W.Geatz.Data Mining A Tutorial-Based Primer[M].Canada:Pearson Education,2003.
  • 7Olivia Parr Rud,Data Mining Cookbook:Modeling Data for Marketing,Risk,and Customer Relationship Managerment[M].USA:John Wiley & Sons,Inc,2003.
  • 8Mehmed Kantardzic,Data mining concepts,Models,Methods,and Algorithms[M].USA:IEEE Press,2003.
  • 9David Hand,Principles of Data Mining[M].USA:Massachusetts Institute,2003.
  • 10AlexBerson StephenSmith.构建面向CRM的数据挖掘应用[M].北京:人民邮电出版社,2001..

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部