期刊文献+

关于旅行商问题的若干启发式算法的性能比分析

Performance Ratio Analysis of Several Heuristics Algorithm for the TSP
下载PDF
导出
摘要 旅行商问题的增量最小插入法、最近插入法、最近加入法的性能比已经被证明有一个上界2,本文在欧几里德平面上给出了这些方法性能比接近于2的例子。另外,我们证明了凸包选边插入法的性能比有一个关于点数的对数函数上界。 The performance ratios of the cheapest insertion method, nearest insertion method, nearest addition method of traveling salesman problem have been shown to have an upper bound 2, we show the ratios have lower bound approximate to 2. In addition, we prove the performance ratio of the convex hull insertion for the traveling salesman problem in Euclidean plane has the upper bound about a logarithmic function of the number of nodes.
作者 刘剑平
出处 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第6期801-803,共3页 Journal of East China University of Science and Technology
基金 华东理工大学科研基金资助项目
关键词 旅行商问题 启发式算法 凸包 性能比 traveling salesman problem (TSP) heuristics algorithm convex hull performance ratio
  • 相关文献

参考文献5

  • 1Gillett B E. Introduction to Operations Research: A Computer-Oriented Algorithmic Approach [M]. USA: McGrawHill Ins, 1976.
  • 2Lawler E L, Lenstra J K, Rinnooy Kan A H G, et al. The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization [M]. New York: John Wiley & Sons, 1985.
  • 3Rosenkrantz D J, Stearns R E, Lewis P M. An analysis of several heuristics for the traveling salesmen problem [J].SIAM J Comput, 1977, 6(3):563-581.
  • 4刘剑平.TSP邻近算法在Euclid平面上的性能比分析[J].华东理工大学学报(自然科学版),2004,30(3):336-338. 被引量:2
  • 5刘剑平.旅行推销员问题凸包方法的性能比分析[J].华东理工大学学报(自然科学版),2004,30(6):712-715. 被引量:1

二级参考文献6

  • 1[1]Gillett B E. Introduction to Operations Research: A Computer-oriented Algorithmic Approach[M]. USA: McGraw-Hill Ins, 1976.
  • 2[2]Lawler E L, Lenstra J K, Rinnooy Kan A H G, et al. The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization[M]. New York: John Wiley & Sons, 1985.
  • 3[3]Rosenkrantz D J, Stearns R E, Lewis P M. An analysis of several heuristics for the traveling salesmen problem[J]. SIAM J Comput, 1977, 6(3):563-581.
  • 4Lawler E L, Lenstra J K, Pinnooy A H G, et al. The traveling salesman problem: A guided tour of combinatorial optimization[M]. New York: John Wiley & Sons, 1985.
  • 5Rosenkrantz D J, Stearns R E, Lewis P M. An analysis of several heuristics for the traveling salesmen problem [J].SIAM J Comput, 1977, 6(3):563-581.
  • 6Yang Cheng-en. The worst case analysis of the largest angle method for the traveling salesman problem[J]. Asia-pacific,Journal of Operational Research, 1988, 5:1-9.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部