期刊文献+

基于L-曲率流滤波器的图像降噪算法 被引量:5

Image denoising algorithm based on L-curvature flow filter
下载PDF
导出
摘要 提出了L-曲率流滤波器的图像降噪(滤波)算法,该方法按图像信噪比大小分高、中、低3类,分别由L滤波器降噪、多级L滤波器降噪以及多次迭代的组合滤波器降噪,并进行了实验研究。结果表明:该算法与均值和中值滤波器相比,输入图像信噪比越低,滤波效果越明显。当输入图像为低信噪比时,对于受高斯噪声污染的图像,该算法滤波比均值滤波平均提高2.98 dB;对于受脉冲噪声污染的图像,该算法滤波比中值滤波平均提高11.09 dB,说明该算法对降低不同种类和不同信噪比的图像噪声有较强的适应性。 Denoising algorithm of L-curvature flow filter was presented. The image noise was obviously removed according to SNR level in terms of the algorithm. L filter, multistage L filter, and the filter combined L filter with curvature flow filter through many iterations, could filter image noise of higher, middle, and lower SNR level respectively. Experiment results show that the lower the input image SNR is, the better the performance of developed algorithm is comparing with the average filter and mean filter. When input image SNR level is low, output image SNR of the algorithm is about 2.98 dB higher than average filter for images with Gaussian noise, and 11.09 dB higher than mean filter for images with impulse noise. The method is very efficient to decrease the image noise of different kinds of SNR and intensities.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2005年第6期759-765,共7页 Optics and Precision Engineering
关键词 L滤波 曲率流滤波 图像降噪 L filter curvature flow filter image denoising
  • 相关文献

参考文献12

二级参考文献24

  • 1郑君里 杨为理.信号与系统[M].北京:高等教育出版社,1984.247-253.
  • 2[日]土井康弘 安腾繁.图像处理概论[M].北京:原子能出版社,1986..
  • 3[1]Zong X L, Laine A F, Geiser E A. Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing, [J]. IEEE Trans. Med. Imag. 1998,17:532-540.
  • 4[2]Zong X, Geiser E A, Laine A F, et al. Homomorphic wavelet shrinkage and feature emphasis for speckle reduction and enhancement of echocardiographic images [J].SPIE, 1996, 2710:658-667.
  • 5[3]Xiang S H,Zhang Y T. Maximization of the signal-to-noise ratio for two dimensional medical ultrasound transducer sensitivity improvement by denoising wavelets[A].in Proc. Int. Conf. Biomedical Engineering[C] Hong Kong,1996.
  • 6[4]Zong X L, Laine A F,Geiser E A. Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing[J]. IEEE Trans. Med. Imag. 1998, 17: 532-540.
  • 7[5]Asernaut H, April G. Properties of speckle integrated with a finite aperture and logarithmically transform[J]. J.Opt. Soc. Am,1976, 66:1160-1163.
  • 8[6]Coifman R R, Donoho D L. Translation-invariant de-noising[P]. In wavelests and statistics, Lecture Notes in Statistics 103, Eds. Berlin, Germany:Springer-verlag,1995.
  • 9[7]Donoho D L, Ohnstne I J. Adapting to unknown smoothness via wavelet shrinkage[J].Amer. Stat. Assoc. 1995.90:1200-1224.
  • 10[8]Jansen M, Malfait M,Bultheel A. Generalized cross validation forwavelet thresholding[J]. Signal Processing, January 1997,56(1):33-44.

共引文献152

同被引文献33

引证文献5

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部