摘要
通过考虑D(Λ)与Γ函数的关系得到判断分布函数F是否属于D(Λ)的两个充要条件: 1.(1)若F∈D(Λ),则对任意的αi>0,m>1有 (■) (2)若存在某αi>0,m>1,使得 (?) 那么 F∈D(Λ) 2.若分布函数F(x)有密度函数F′(x),且F′(x)在上端点的某一个左邻域内非增,则F(x)∈D(Λ)当且仅当 1/F′(x)∈Γ.
Twe sufficient and necessary conditions about the F E D(Λ) were got by considering the relation between D(Λ) and Γ function. The results are:(1)F∈D(Λ) iff 1-∫x^x0[∫y1^x0…[∫ym-1^x0(1-F(t))^am dt]^am-1…dy2]^a1 dy1∈D(Λ) in which the necessary condition hold for allai ai〉0,m〉 1, and the sufficent condition hold for any ai〉0,m〉1;(2) If F′(x), the density of F(x) is noninereasing on the left neighorhood of x0, then F(x)∈D(Λ) iff 1/F′(x)∈Γ.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2005年第6期981-986,共6页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(70371061)
重庆市自然科学基金资助项目(CSTC
2005BB8098)
关键词
D(Λ)吸引场
正规变化函数
辅助函数
domain of attraction of D(Λ)
regular varying functiom auxiliary function