期刊文献+

平面常宽凸域的不对称性度量

A Measure of Asymmetry for Convex Domains of Constant Width
下载PDF
导出
摘要 通过引入刻画平面常宽凸域的不对称性函数,证明了在平面常宽凸域中,圆域 是最对称的,而Reuleaux三角形是最不对称的. We introduce for convex domains of constant width a measure of asymmetry and show that the most symmetric domains are circular discs and the most asymmetric domains are Reuleaux triangles.
作者 熊革 倪建华
机构地区 上海大学数学系
出处 《应用数学与计算数学学报》 2005年第2期61-66,共6页 Communication on Applied Mathematics and Computation
基金 上海市教育委员会青年科学基金资助的课题(Granted No:214511)
关键词 常宽凸域 不对称函数 Reuleaux三角形 convex domains of constant width, asymmetry fuction, reuleaux triangle
  • 相关文献

参考文献8

  • 1B. Grünbaum. Measures of symmetry of convex sets, Proc.of Symposia in Pure Math. Amer.Math. Soc., Providence, 1963, 7: 233~270.
  • 2G.D. Chakerian, H. Groemer. Convex bodies of constant width, In: Convexity and its applications. Birkh[a]user Verlag, Basel-Boston-Stuttgart 1983, 49~96.
  • 3A.S. Besicovitch. Measures of asymmetry for convex curves, Ⅱ. Curves of constant width. J.London Math. Soc. 1951, 26: 81~93.
  • 4R. Schneider. Zu einem problem von Shephardüber die projectionen konvexer k[o]rper. Math.Z. 1967, 101: 71~81.
  • 5H. Groemer. Geometric applications of fourier series and spherical harmonics. Cambridge University Press, Cambridge- New York, 1996.
  • 6H. Groemer, L.J. Wallen. A measure of asymmetry for domains of constant width. Beitr[a]ge Zur Algebra und Geom., 2001, 42: 517~521.
  • 7R. Schneider. Smooth approximations of convex bodies. Cambridge University Press, Cambridge, 1993.
  • 8R. Schneider. Convex Bodies: the Brunn-Minkowski Theory. Cambridge University Press,Cambridge, 1993.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部