摘要
1993年,Brualdi和Massey猜想每一个图G可以用Δ(G)+2种色正常关联着色.尽管Algor和Alon通过一个例子否定了该猜想,但是对一些特殊图类该猜想可能成立.通过给出块图和单圈图的关联色数,证明了猜想对这两类图成立,并讨论了图G和H的冠图的关联色数.
In 1993,Brualdi and Massey conjectured that every graph G can be incidence colored with A(G)+2 colors. Although this conjecture was solved in the negative by an example in Algor and N. Alon,it might hold for some special classes of graphs. In this paper, we proved that the conjecture holds for block graph and unicyclic graph by giving exact incidence coloring number of them. Furthermore,we discussed the incidence coloring number of the corona graph of G and H.
出处
《内蒙古师范大学学报(自然科学汉文版)》
CAS
2005年第4期404-408,共5页
Journal of Inner Mongolia Normal University(Natural Science Edition)
基金
ProjectSupportedbytheNaturalScienceFoundationofShantouUniversity(130071008)
关键词
关联色数
块图
冠图
单圈图
Incidence coloring number
block graph
corona graph
unieyelie graph