期刊文献+

社会养老保险中隐性债务的双随机模型 被引量:1

Dual random models for implicit pension debt in social pension system
下载PDF
导出
摘要 本文在利率与死亡率均为随机的背景下,对我国社会养老保险制度中的隐性债务进行分析.提出了两种方法,得到了养老金给付现值的期望值和方差,并对利率以Wiener过程建模,得到了期望值和方差的具体表达式.在实例中,采用Monte Carlo仿真的方法得到了养老金给付现值及其近似替代值的经验分布. This paper analyzes the implicit pension debt in social pension system in a stochastic interest rate and stochastic mortality environment. Two methods are proposed to calculate the expected value and the variance of the present value of the pension benefits. The concrete expressions of the expected value and the variance are derived when the interest rate model is constructed with Wiener process. In a numerical example, the Monte Carlo method is used to get the empirical distributions of both the present value of the pension benefits and its approximation.
出处 《系统工程学报》 CSCD 北大核心 2005年第6期570-577,643,共9页 Journal of Systems Engineering
基金 国家科技部资助项目(2003EE550001)
关键词 社会养老保险 隐性债务 精算 MONTE Carlo仿真 social pension system implicit pension debt actuarial science Monte Carlo simulation
  • 相关文献

参考文献11

二级参考文献20

  • 1何文炯,蒋庆荣.随机利率下的增额寿险[J].高校应用数学学报(A辑),1998,13(2):145-152. 被引量:36
  • 2凯利森S G 尚泽冀(译).利息理论[M].上海:上海科学技术出版社,1995..
  • 3鲍尔斯NL 余跃年(译).精算数学[M].上海:上海科学技术出版社,1996..
  • 4世界银行 劳动部社会保险研究所(译).防止老龄危机:保护老年人及促进增长的政策[M].北京:中国财政经济出版社,1995..
  • 5宋晓梧.中国养老保险隐性债务研究[J].中国社会保障,2000,5:3-5.
  • 6何平.中国养老保险基金测算报告[J].社会保障制度,2001,(3).
  • 7Panjer,H.H. and Bellhouse, D. R. Stochastic modelling of interest rates with applications to life contingencies[J]. Journal of Risk and Insurance 47,91~110.
  • 8Pollard,J.H. On fluctuating interest rates[J]. bulletin van de Koniniklijke Vereniging van Belgische Actuarissen 66,68 ~ 97.
  • 9A.De Schepper,M.J.Goovaerts and R.Kaas. A recurisive scheme for perpetuities with random positive interest rates[J]. Part 1. Analytical Results. Scand. Actuarial J.1:1~10.
  • 10Beekman, J., A., Fuelling, C. P., Interest and mortality randomness in some annuities[J]. Insurance: Mathematics & Economics, 1990,9:185~196.

共引文献61

同被引文献9

  • 1蒋庆荣.随机利率下的终身寿险[J].杭州大学学报(自然科学版),1997,24(2):95-99. 被引量:9
  • 2Milevsky M A.The presnt value of a stochastic perpetuity andthe gamma distribution [J]. Insurance: Mathematics and Eco-nomics,1997(20):243-250.
  • 3Milevsky M A .Martingales scale functions and stochastic lifeannuities a not [J]. Insurance: Mathematics and Economics,1999(24):149-154.
  • 4Kaas R,Dhaene J,Goovaerts M J.Upper and lower bounds forsums of variables [J] .Insurance:Mathematics and Economics,2007(27):151-168.
  • 5De A, Goovaerts M J,Dhaene J,et al.Bounds for present valuefuncions with stochastic interest rates and stochastic volatility[J].Insurance:Mathernatics and Econornics,2002(31):87-110.
  • 6Perry D, Stadje W?Function space intenration for annuities[J].Insurance:Mathematics and Economics,2001(29):73-82.
  • 7Perry D,Stadje W,Yosef R.Annuities with controlled randominterest[J].Insurance: Mathematics and Economics,2003(32):245-253.
  • 8郎艳怀,冯恩民.随机利率下综合人寿保险模型[J].大连理工大学学报,2001,41(5):511-513. 被引量:12
  • 9王丽燕,柳扬.随机利率下的准备金与寿险风险分析[J].大连大学学报,2003,24(4):17-20. 被引量:10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部