期刊文献+

机器人在复杂环境下的火炬识别 被引量:3

Torch recognition of robot in complex environment
下载PDF
导出
摘要 为了从复杂环境中准确识别出火炬,选取火炬的颜色特征与几何形状特征作为识别火炬的依据,将两者组合成有意义的图像特征,采用HIS颜色空间,中值滤波,Sobel边缘提取,Hough变换等方法,同时提出了一种有效的空穴填补法,实现了识别火炬的目的,它是进一步进行机器人视觉伺服的基础. In order to recognize the torch from complex environment, this article chooses the color features and geometry shape features of the torch as dependence for the torch's recognition. These two features are then composed into significative image features. Adopting the HIS color space, median filter, Sobel edge distill, Hough transform and using an effective method to fill the cavity, the recognition of the torch can be realized. It is the base of robot's vision servo.
作者 郝婷 孟正大
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第A02期151-154,共4页 Journal of Southeast University:Natural Science Edition
基金 国家高技术研究发展计划(863计划)资助项目(2003AA420010-04)
关键词 火炬 颜色特征 形状特征 识别 torch color features shape features recognition
  • 相关文献

参考文献6

  • 1Shen Yantao, Liu Yunhui, Li Kejie. Adaptive visual feedback control of manipulators in uncalibrated environment [A]. In: Proceedings of the 2001 IEEE/ RSJ International Conference on Intelligent Robots and Systems Maui[C]. Hawail, USA,2001.7- 12.
  • 2傅一平,李志能,袁丁.基于HSI空间的颜色算法提牌照识别的性能[J].计算机工程与设计,2004,25(5):703-707. 被引量:23
  • 3夏良正 李久贤 刘凯.数字图像处理[M].南京:东南大学出版社,2001.154-159.
  • 4王麟琨,徐德,谭民.机器人视觉伺服研究进展[J].机器人,2004,26(3):277-282. 被引量:69
  • 5Hajjawi M K, Shirkhodaie A. Cooperative visual team working and target tracking of mobile robots[A]. In: Proceedings of 34th Southeastern Symposium on System Theory [C]. 2002. 376- 380.
  • 6Song Kai-Tai, Chang Jhy-Min. Experimental study on robot visual tracking using a neural controller, Industrial Electronics, Control,and Instrumentation[A]. In: Proceedings of the 1996 IEEE IECON 22nd International Conference[C]. Taipei, China, 1996. 1850-1855.

二级参考文献44

  • 1Jain A. Fundamental of digital image processing [M].Prentice-Hall, 1989.
  • 2Postolache A, Trecat J. License plate segmentation based on a coarse texture approach for traffic monitoring system [C].Proceeding of the ProRISC & IEEE-Benelux Workshop on Circuits,Systems and Signal Processing, Mierlo,The Netherland, 1995.23-24,243-250.
  • 3Johnson A S, Bird B M. Number-plate matching for automatic vehicle identification [C]. IEE Colloquim on Electronic Image and Image Processing in Security and Forensic,1990.
  • 4Kim. Learning-based approach for license plate recognition neural networks for signal processing X, 2000 [C]. Proceedings of the 2000 IEEE Signal Processing Society Workshop,Volume: 2, 2000. 614 -623.
  • 5Fahmy M M M. Automatic number-plate recognition [C].Neural Network Approach,Proceedings of VNIS′94 Vehicle Navigation and Information System Conference, 1994.
  • 6Sang Kyoon Kim,Dae Wook Kim,Hang Joon Kim. A recognition of vehicle license plate using a genetic algorithm based segmentation image processing [C]. Proceedings, International Conference, 1996. 661-664.
  • 7Chi Zhang. A new method of color image segmentation based on intensity and hue clustering [C]. Pattern Recognition,2000. Proceedings, 15th International Conference, 2000.613-616.
  • 8Kehtarnavaz A. Color image segmentation using multi-scale clustering,Image analysis and interpretation [C]. 1998 IEEE Southwest Symposium, 1998.142 - 147.
  • 9Vitabile S, Pollaccia. Road signs recognition using a dynamic pixel aggregation technique in the HSV color space [C].Image Analysis and Processing, Proceedings l lth International Conference, 2001.572 -577.
  • 10Cheng Heng-da, Sun Ying.A hierarchical approach to color image segmentation using homogeneity [C]. Image Processing, IEEE Transactions, 2000.2071 -2082.

共引文献93

同被引文献21

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部