期刊文献+

文本分类支持向量机的i-ξα估计

i-ξα Estimator of SVM Text Classification
原文传递
导出
摘要 ξα估计是进行支持向量机模型选择的重要指标,它通过分析支持向量的特性,可以在训练一次的情况下估计出训练集发生"留一错误"的次数,进而判断当前模型参数选择的优劣。本文分析了文本向量及RBF核函数的特点,对用于文本分类领域的ξα估计进行了改进,提出了一种计算简便的"i-ξα估计"。实验表明,改进后"i-ξα估计"在保证准确性的前提下,明显提高了计算速度。 The ξα estimator is an important guideline for the SVM model selection . Using the characteristics of the support vectors, the ξα estimator can estimate the LOO errors with the SVM being trained for only one time, and then whether parameters are appropriate can be iudged. By analyzing the characteristics of text vectors and RBF kernel , the ξα estimator in text field is improved, which is called i-ξα estimator. Experimental results show the correctness of the i-ξα estimator is identical to that of the ξα estimator and its speed is much higher than the ξα estimator.
作者 王晔 黄上腾
出处 《模式识别与人工智能》 EI CSCD 北大核心 2005年第6期670-674,共5页 Pattern Recognition and Artificial Intelligence
关键词 推广误差 留一错误 ξα估计 支持向量机 文本分类 Generalization Error, Leave One Out Error (LOO Error), ξα Estimator, Support Vector Machine, Text Classification
  • 相关文献

参考文献14

  • 1Joachims T. Estimating the Generalization Performance of a SVM Efficiently. In: Proe of the 17th International Conferenceof Machine Learning. San Francisco, USA: Morgan Kaufman,2000, 431-438.
  • 2Vapnik V N. Statistical Learning Theory. New York, USA:John Wiley & Son, 1998.
  • 3Devroye L, Gy6rfi L, Lugosi G. A Probabilistic Theory of Pattern Recognition. New York, USA: Springer-Verlag, 1996.
  • 4Lunts A, Brailovski V. Evaluation of Attributes Obtained in Statistical Decision Rules. Engineering Cybernetics, 1967, 3:98-109.
  • 5Stone M. Cross-Validatory Choice and Assessment of Statistical Predictions. Journal of the Royal Statistical Society (Series B),1974, 36(1):111-147.
  • 6Scholkopf B. Statistical Learning and Kernel Methods. Technical Report, MSR-TR 2000-23, Microsoft Researgh, Cambridge, UK, 2000.
  • 7Joachims T. Text Categorization with Support Vector Machines. In: Proc of the 10th European Conference on Machine Learning. Chemnitz, Germany, 1998, 137-142.
  • 8LIBSVM. http://www.csie.ntu.edu.tw/-cjlin/libsvmtools.
  • 9Bennett K P. Combining Support Vector and Mathematical Programming Methods for Classification. In: Seholkopf B, Burges C J C, Srwola A J, eds. Advances in Kernel Methods: Support Vector Learning. Cambridge, USA: MIT Press, 1999, 307-326.
  • 10Kreel U H G. Pairwise Classification and Support Vector Ma chines. In: Scholkopf B, Burges C J C, Srowla A J, eds. Ad vances in Kernel Methods: Support Vector Learning. Cam bridge, USA: MIT Press, 1999, 255-268.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部