摘要
在L_Fuzzy拓扑空间研究中几种分离性是λ_截拓扑和λ_弱诱导空间的关系,直接证明ST1,ST2及强Hausdorf分离性与λ_可截性质,并得到,满层的λ_弱诱导空间(LX,δ)是ST1空间,当且仅当λ_截拓扑空间(X,ιλ(δ))是T1空间,当且仅当底空间(X,[δ])是T1空间;满层的λ_弱诱导空间(LX,δ)是ST2空间,当且仅当它是强Hausdorf空间,当且仅当λ_截空间(X,ιλ(δ))是Hausdorf空间,当且仅当底空间(X。
In this paper, the relations between some separabilities in L _Fuzzy topological spaces, λ _cut topologies of L _Fuzzy topologies and λ _weakly induced spaces are discussed, the theorems are proved directly that ST 1, ST 2 and strongly Hausdorff separabilities are all λ _cutability properties; and the following conclusions are obtained: if L _Fuzzy topological space ( L X,δ ) is a fully_sheaved and λ _weakly inducedspace, then ( L X,δ ) is a S T 1_space, if and only if the λ _cut topological space ( X,ι λ(δ) ) is a T 1_space; if ( L X,δ ) is a fully_sheaved and λ _weakly induced space, then (L X,δ) is a ST 2_space, if and only if it is a strongly Hausdorff space, the λ _cut topological space ( X,ι λ(δ) ) is a Hausdorff space,and the base space ( X,) is a Hausdorff space.
出处
《曲阜师范大学学报(自然科学版)》
CAS
1996年第4期50-52,共3页
Journal of Qufu Normal University(Natural Science)
关键词
λ-截拓扑
ST1分离性
ST2分离性
豪斯道夫分离性
L _Fuzzy topology λ _cut topology λ _weakly induced space λ _cutability ST 1_separability ST 2_separability strongly Hausdorff separability