摘要
证明了在一个适当稠密但却有限的结点集上,若已知阻尼RLW方程周期解的渐近性,则这个解自身的渐近性可被完全确定.并给出了确定解的渐近性所需结点数目的一个上界估计.
It is proved that if the asymptotic behavior of the periodic solution for damped RLW equation is known on a sufficiently dense set(but finite),then the asymptotic behavior of the solution itself is totally determined.An upperbound is given for the number of nodals needed to determined the asymptotic behavior of the solution.
出处
《河北师范大学学报(自然科学版)》
CAS
1996年第3期1-4,共4页
Journal of Hebei Normal University:Natural Science
基金
国家自然科学基金
数学机械中心资助
关键词
阻尼RLW方程
周期解
渐近性
结点
damped RLW equation
periodic solution
asymptotic behavior
nodal point