期刊文献+

子波网络的近似能力分析 被引量:7

Engineering Analysis of Approximation with Wavelet Networks
下载PDF
导出
摘要 选取单隐层子波网络为研究对象,并且允许隐层上的节.点数可以足够多,通过对其构成机理的分析,得出一个有关这种网络对非线性映射逼近能力的定理,从数学上给予了严格的证明,并进行了仿真计算,仿真结果表明。 Wavelet networks[2] is useful in our design of information processing system of air-to air missile. In order to be fully confident of correct approximation (correct apporximation means arbitrary target information can always be accurately transmitted and ultilized ), a mathematical proof of the correctness of approximation when wavelet networks is properly applied is offered in this paper.The wavelet networks considered in this paper has only single hidden layer but infinite neurons. That means, in eq. (2), N is any large number and mathematically it can approach Infinity. We prove a theorem that states that g (x )I S are dense in L2 (Rn). That is to say,wavelet networks given by g (x ) can approximate any arbitrary fUnction in L2(Rn) accurately.Two simulation examples are given. The solid curves in Figs. 1 and 2 represent arbitrary functions selected by us. The dotted curves are approximation curves obtained with wavelet networks given by g (x). Fies. 1 and 2 appear to show that the approximations are satisfactory as predicted by our theorem.
机构地区 西北工业大学
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 1996年第3期415-419,共5页 Journal of Northwestern Polytechnical University
基金 国防科技预研基金
关键词 分析子波 子波变换 子波网络 神经网络 近似能力 wavelet networks, approximation, single hidden layer
  • 相关文献

参考文献3

  • 1Zhang Qinghua,IEEE Trans on NN,1992年,3卷,6期,889页
  • 2刘贵忠,小波分析及其应用,1992年
  • 3郑维行,Fourier分析与逼近论.1.上,1985年

同被引文献40

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部