摘要
引进似然比作为整值随机变量序列相对于服从负二项分布的独立随机变量序列的偏差的一种度量,并通过限制似然比给出了样本空间的一个子集,在此子集上得到了任意整值随机变量的一类用不等式表示的极限定理,独立随机变量序列的一类强律是其特例.
In this paper the notion of likelihood ratio, as a measure of deviation between a sequence of the integer-valued variables with negative binomial distrbution, is introduced. A subset of the sample space is given by restricting the likelihood ratio, and on this subset a class of limit theorems, represented by inequalities, for the sequenee of arbitrary integer-valued random variables are obtained. A Class of strong law of independent random variable sequences is its special example.
出处
《河北工业大学学报》
CAS
1996年第2期108-114,共7页
Journal of Hebei University of Technology
关键词
极限定理
强律
似然比
负二项分布
随机变量序列
Limit theorem, Strong law, Likelihood ratio, Negative binomial distribution