期刊文献+

一种基于图像边缘检测的小波阈值去噪方法 被引量:8

Wavelet image threshold denoising based on edge detection
下载PDF
导出
摘要 边缘特征是图像最有用的高频信息,因此,在图像去噪的同时,应尽量保留图像的边缘特征。为实现这一想法,提出了一种基于图像边缘检测的小波阈值去噪新方法。该方法在去噪前,先用定位精度高的小尺度LOG算子检测图像的边缘,对检测出的边缘进行均值平滑滤波,以减少边缘图像中的孤立点噪声;进而再对图像边缘和含噪图像分别进行小波分解,根据分解后的小波系数以确定图像的边缘特征和非边缘特征;最后,再对图像边缘对应的小波分解系数进行小阈值处理,而对非边缘的则进行大阈值处理,从而实现了在去噪的同时保留了图像边缘特征的目的。实验结果表明,与普通的小波阈值去噪方法相比,该方法可有效地保持图像的边缘信息,去噪效果则优于前者。 Edge information is the most important high frequency information of an image. Therefore it is vital to maintain more edge information in the process of denoising. The image denoising method, wavelet image threshold denoising based on edge detection, was presented. Before denoising, the edge of a noised image was detected with smaU-seale LOG operator which had higher orientation precision, and the image edge was smoothed with average filter to reduce a great lot of isolated point. Next, the image edge and non-edge character in wavelet coefficient were ascertained by decomposing the noised image and edge image, and the edge coefficient of wavelet decomposed with lower thresholds and non-edge coefficient were dealt with higher thresholds. In this way, the edge could be protected while denoising. Experiment results show that, compared with the eommouly-used wavelet threshold denoising methods, this method can keep image's edges from damaging and excels eommouly-used wavelet threshold denoising methods.
出处 《计算机应用》 CSCD 北大核心 2006年第1期143-145,共3页 journal of Computer Applications
关键词 图像处理 LOG算子 小波阈值去噪 image processing LOG operator Wavelet threshold denoising
  • 相关文献

参考文献6

  • 1CLARK JJ. Authenticating edges produced by zero-crossing algorithm[J]. IEEE-PAMI, 1998, 11(1): 43-57.
  • 2TABB M, AHUJA N. Multiscale image segmentation by integrated edge and region detection[J]. IEEE-IP, 1997, 2(10): 642-955.
  • 3DONOHO DL. Denoising by soft thresholding[J]. IEEE Transactionson Information Theory, 1995, 41(3): 613 -627.
  • 4赵艳明,全子一.一种空间自适应小波门限去噪算法[J].光通信研究,2004(5):49-51. 被引量:4
  • 5BURRS CS, GOPINATH RA, GUO HT. Introduction to Wavelets and wavelet Transform[M]. Prentic Hall Upper Saddle River,2002.
  • 6DAUBECHIES I. TEN Lectures on wavelets[A]. SIAM[C]. 1992.194 - 202.

二级参考文献5

  • 1Chang S G, Yu B, Vetterli M. Spatially adaptive wavelet thresholding with context modeling for image denoising [A]. ICIP1998 [C]. Chicago, USA: IEEE, 1998. 535-539.
  • 2Chang S G, Yu B, Vetterli M. Spatially adaptive wavelet thresholding with context modeling for image denoising [J]. IEEE Transactions on Image Processing, 2000, 9(9): 1522-1531.
  • 3Marpe D, Cycon H L, Zander G, et al. Context-based denoising of images using iterative wavelet thresholding [A]. SPIE2002 [C]. San Jose, CA, USA: SPIE, 2002. 907-914.
  • 4Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage [J]. Biometrica, 1994(81):425-455.
  • 5Chang S G, Yu B, Vetterli M. Image denoising via lossy compression and wavelet thresholding [A]. ICIP1997 [C]. Washington DC, USA: IEEE, 1997. 604-607.

共引文献3

同被引文献86

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部