摘要
设E是实Banach空间,K是E中非空闭凸集,{Ti}i=1N是K中严格伪压缩映像族,对x0∈K,一个新的隐迭代格式组按如下格式给出:xn=αnxn-1+(1-αn)Tnyn yn=βnxn-1+(1-βn)Tnxn 这里Tn=TnmodN,{αn},{βn}(?)[0,1],n≥1.该文研究这个新格式逼近严格伪压缩映像族不动点问题.证明了序列{xn}可以逼近严格伪压缩映像族{Ti}i=1N的不动点.
Let E be real Banach space and K a nonempty convex subset of E, and let {Ti}i=1^N be a finite family of Strictly pseudocontractive self-maps of K, for x0 ∈ K, a new system of implicit iteration process is put forward as following xn=αnxn-1+(1-αn)Tnyn yn=βnxn-1+(1-βn)Tnxn Where Tn=TnmodN,n≥1,{αn},{βn} belong to [0,1]. The problems of approximating fixed points of strictly pseudcontractive mappings in an arbitrary real Banach spaces by this new interation sequence is investigated. Meanwhile, strong convergent theorems are also proved.
出处
《天津工业大学学报》
CAS
2005年第6期47-49,共3页
Journal of Tiangong University
基金
天津市学科建设基金资助项目(100580204)
关键词
严格伪压缩映像
隐格式组迭代
公共不动点
收敛定理
strictly pseudocontractive maps
system of implicit iteration
common fixed points
convergent theorem