期刊文献+

长江下游农业生态区CO_2通量的观测试验 被引量:14

MEASUREMENTS OF CO_2 FLUXES OVER TWO DIFFERENT UNDERLYING SURFACES IN AN AGRICULTURAL ECOSYSTEM OVER LOWER BASINS OF THE YANGTZE
下载PDF
导出
摘要 利用2001 年6月10日~7月20日在安徽省全椒县稻田和2002年6月10日~7月20日在肥西县农作物混作区观测的近地层 CO2和能量通量资料,对农作物混作区和稻田CO2通量特征进行了比较.结果表明:平均情况下,观测期内稻田白天(夜间)吸收(放出)CO2为55.16 g·m-2(14.19 g·m-2);农作物混作区白天(夜间)吸收(放出)CO2为22.67 g·m-2(12.40 g·m-2);稻田白天吸收的CO2通量随水稻生长而逐渐增加,夜间放出的CO2在拔节期最高;农作物混作区CO2通量在整个观测期并没有显著改变;稻田和农作物混作区均为大气CO2的汇.对CO2通量与光合有效辐射的关系分析表明:白天稻田吸收的CO2通量与到达地面的光合有效辐射存在着显著的负相关关系.文中结果为数值模拟稻田与近地层大气CO2交换提供了重要依据. In order to better understand the CO2 flux over agricultural ecosystem regional climate change, it is necessary to quantify the C02 fluxes are collected directly by using eddy covariance over a rice paddy in the summer of 2001 and over an inhomogeneous crop surface in the summer of 2002 respectively. On average, daytime absorption and nighttime release of CO2 flux by the rice paddy are 55.16 g·m^-2·d^-1 and 14.19 g·m^- 2·d^-1, and by the inhomogeneous crop surface are 22.67 g·m ^-2·d ^-1 and 12.40 g·m^-2·d^-1. Rice paddy and the inhomogeneous crop surface are sinks of atmospheric CO2. China is a great agricultural country, increasing the area of rice paddy will help CO2 deposition, and will slow down increase of atmospheric CO2 and greenhouse effect. In addition, the relationship between daytime absorption of CO2 flux and Photosynthetically-active radiation is investigated for the rice paddy, and resulting a negative correlation. Hopefully the results obtained in present work will provide an important basis for numerical modeling of CO2 flux between atmosphere and land.
出处 《应用气象学报》 CSCD 北大核心 2005年第6期828-834,共7页 Journal of Applied Meteorological Science
基金 国家自然科学基金项目(40575007) 中国气象局2003年气候变化专项共同资助
关键词 长江下游 农业生态区 CO2通量 能量通量资料 光合有效辐射 农业气象 Lower basins of the Yangtze The agricultural ecosystem Inhomogeneous crop surface Eddy covariance
  • 相关文献

参考文献9

  • 1宋长春.湿地生态系统碳循环研究进展[J].地理科学,2003,23(5):622-628. 被引量:71
  • 2Miyata A, Leuning R, Thomas O, et al. Carbon dioxide and methane fluxes from an intermittently flooded paddy field. Agricultural and Forest Meteorology, 2000, 102: 287-303.
  • 3Katul G G, Leuning R, Kim J. Estimating CO2 source/sink distributions within a rice canopy using higher-order closure models. Boundary-Layer Meteorology, 2001, 98 : 103- 125.
  • 4Campbell C S, Heilman J L, Melnnes K J, et al. Diel and seasonal variation in CO2 flux of irrigated rice. Agricultural and Forest Meteorology, 2001, 108 : 15 - 27.
  • 5Gao Z, Chae N, Kim J, et al. Modeling of surface energy partitioning, surface temperature and soil wetness in the Tibetan prairie using the Simple Biosphere Model 2 (SiB2). J Geophys Res, 2004, 109: 1306102, dio; 10. 1029/2003JD004089.
  • 6高志球,卞林根,陆龙骅,丁国安.水稻不同生长期稻田能量收支、CO_2通量模拟研究[J].应用气象学报,2004,15(2):129-140. 被引量:23
  • 7Lu Longhua, Cheng Yanjie, Bian Lingen, et al. A study the turbulence fluxes transfer of CO2, sensible heat and latent heat for the surface layer over the typical rice field, Yangtdz Delta. Chinese Journal of Geophysics, 2003, 46 (6) : 978-987.
  • 8Gao Z Q, Bian L G, Zhou X J. Measurements of turbulent transfer in the near-surface layer over a rice paddy in China.J Geophys Res, 2003, 108(D13) : 4387, dio: 10.1029/2002JD002779.
  • 9Leuning R, King K M. Comparison of eddy-covariance measurements of CO2 fluxes by open-and closed-path CO2 analysets. Boundary-Layer Meteorology, 1992,59: 297-311.

二级参考文献56

  • 1吕宪国 何岩 杨青.湿地碳循环及其在全球变化中的意义[A].陈宜瑜.中国湿地研究[C].长春:吉林科学技术出版社,1995.68-72.
  • 2Whiting G J, J P Chanton. Primary production control of methane emission from wetlands [J]. Nature , 1993,364:794-795.
  • 3Kelly C, et al. Gas fluxes from wetland ponds of different origins [A]. presentation to Impacts of Climate Change to Inland Wetlands: a Canadian Perspective [C]. Clair T A, Warner B G,Robarts R, et al. Oak Hammock Marsh Conservation Centre,Stonewall, Manitoba, April, 1997.
  • 4Bubier J L, P M Crill, T R Moore, et al. Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex [J]. Global Biogeochem. , Cycles, 1998, 12: 703-714.
  • 5Bridgham S D, B K Sorrell. Mechanisms controlling soil respiration(CO2 and CH4) in southern peatlands[J]. Soil Biol. Biochem. , 1992,24(11) :1089-1099.
  • 6Billings W D, J O Luken, D A Mortensen, et al. Arctic tundra:A source or sink for atmospheric carbon dioxide in a changing environment [J]. Oecologia, 1982,53:7-22.
  • 7Oechel W C, S J Hastings, G L Vourlitis, et al. Recent changes of arctic tundra ecosystems from a net carbon sink to a source[J]. Nature, 1993,361:520-523.
  • 8Oechel W C, G L Vourlitis, S J Hastings, et al. Change in arctic CO2 flux over two decades: Effects of climate change at Barrow, Alaska[J]. Ecol. Appl. , 1995,5:846-855.
  • 9Moore T R, N T Roulet, J M Waddington. Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands[J]. Clim. Change, 1998, 40:229-245.
  • 10Griffis T J, W R Rouse, J M Waddington. Interannual variability of net ecosystem CO2 exchange at a subarctic fen[J]. Global Biogeochem. , Cycles, 2000,14:1109-1121.

共引文献92

同被引文献248

引证文献14

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部