期刊文献+

弱T-余代数上的广义Drinfel’d量子偶(英文)

Generalized Drinfel'd Quantum Double for Weak T-Coalgebras
下载PDF
导出
摘要 在这篇文章中,我们引进了弱Doi-Hopf群模和群斜配对等概念,这些是分别作为弱Doi-Hopf模和普通斜配对概念的推广.以此为工具,我们建立了一类广义的D rinfel’d量子偶,这些是一类弱Hopf群余代数. In this paper, we introduce the notions of a weak Doi-Hopf group module and a group skew pair as a respective generalization of a weak Doi-Hopf module and the usual skew pair. We establish a class of generalized Drinfel'd doubles which is a class of weak Hopf group coalgebras by a group skew pair.
作者 刘玲 王栓宏
机构地区 东南大学数学系
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2005年第4期29-33,共5页 Journal of Nanjing Normal University(Natural Science Edition)
基金 SupportedbytheNationalNaturalScienceFoundationofChina(10571026)
关键词 群余代数 弱T-余代数 群斜配对 广义的Drinfel'd量子偶 group coalgebras, weak T-coalgebras, group skew pairs, generalized Drinfel'd quantum double
  • 相关文献

参考文献9

  • 1Boehm, G. Doi-Hopf modules over weak entwining modules [ J]. Comm Algebra, 2000, 28 (10) : 4687-4698.
  • 2Caenepeel S, Militaru G, Zhu S. Frobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations [ M]. Lect Notes in Math, Berlin: Springer-Verlag, 2002.
  • 3Caenepeel S, Militaru G, Zhu S. Crossed modules and Doi-Hopf modules [ J]. Israel J of Math, 1997, 100 ( 1 ) : 221-248.
  • 4Drinfel'd V G. On almost commutative Hopf algebras [J]. Leningrad Math J, 1990, 1 (2) : 321-342.
  • 5Doi Y, Takeuchi M. Multiplication alteration by two-cocycles in the quantum view [ J ]. Communication in Algebra, 1994,22(14) : 5715-5732.
  • 6Maiid S. Double of quasitriangular Hopf akgebras [J]. Comm in Algebra, 1991, 19( 11 ) : 3061-3073.
  • 7Virelizier A. Hopf group-coalgebras [J]. J Pure and Applied Algebra, 2002, 171(1) : 75-122.
  • 8Wang S H, Li J Q. On twisted smash products for bimodule algebras and the Drinfeld double [J]. Comm in Algebra, 1998,26(8) : 1435-1444.
  • 9Wang S H. Group twisted samsh products and Doi-Hopf modules for T-coalgebras [ J ]. Comm in Algebra, 2004, 32 (9) :3417-3436.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部