期刊文献+

基于图像处理的桥墩防撞预警系统的研究 被引量:3

Bridge Anticollision System Based on Image Processing
下载PDF
导出
摘要 利用图像处理硬件设备,通过摄像头将视频信息采入,送入DSP进行分析处理;专门视频信息处理软件,运用各种图像处理技术,进行实时处理分析,对船舶进行实时监控。当船舶进入预警区,经计算机判断处理,提醒监控人员并通过广播对船舶驾驶人员发出警告,避免事故发生。在图像序列处理技术的开发中,采用软硬件分离的方法,先进行基于Visual C++的计算机软件设计研究;在软件中,研究了船舶检测、船舶跟踪与计算等内容。 This paper designes the embedded system based on DSP chips. The image acquisition card captured images and send them into embedded image processing system mainly consist of DSP, CPU, ram, and a Linux operation system, in which the software part the system calculates information,such as the speed of ships,the trick of ships, uses every kind of image processing technology to real analyze and monitor ships, when ships come into the early warning area,it can warn the drivers to be careful so as to avoid accident. During the course of image processing,it separates the software from hardware,it does some software design based on vc+ + 6.0, Then study the methods of ships detecting, ships tracking etc.
出处 《舰船电子工程》 2005年第6期63-67,共5页 Ship Electronic Engineering
关键词 桥墩防撞 DSP 图像处理 船舶检测 船舶跟踪 bridge anticollision, DSP , iamge processing, ship detecting , ship tracking
  • 相关文献

参考文献4

二级参考文献3

  • 1Surendra Gupte, et al. Detection and Classification of Vehicles [ J ].IEEE Transactions on Intelligent Transportation Systems, 2002, (3):37-47.
  • 2W Liu ,J Zhang. Image Sequence Segmentation Using Curve Evolution and Improved Background Subtraction [ C ]. Proceedings of SPIE,2001.1-7.
  • 3Luc Vincent. Morphological Grayscale Reconstruction in Image Analysis: Applications and Efficient Algorithms [ J ]. IEEE Transactions on Image Processing, 1993, ( 2 ): 176 - 201.

共引文献37

同被引文献15

  • 1曾明,李建勋.基于自适应形态学Top-Hat滤波器的红外弱小目标检测方法[J].上海交通大学学报,2006,40(1):90-93. 被引量:28
  • 2罗勤,曾致远,李波.桥墩安全监测系统中背景重建技术的研究[J].计算机技术与发展,2006,16(6):23-25. 被引量:1
  • 3徐志伟,马登极,林峰,朱善安,何正军.基于DM642的视频解码设备TVP5150驱动程序的设计[J].电子器件,2006,29(3):945-950. 被引量:8
  • 4Tsong-Yi Chen, Wen-Sheng Chen, Thou-Ho (Chao- Ho) Chen, et al. Automatic Ship Flow Analysis and Counting System in a Specific Sea-Area Based 011 Video Processing[C]//The 16th National Conference on Automation Technology. GaoXiong, 2008: 696- 702.
  • 5M. Heikkila, M. Pietikainen, D. Harwood. A Texture-Based Method for Detecting Moving Objects[C]// Proc 15th British Machine Vision Conference. London, UK, 2004,1: 187-196.
  • 6M. Heikkila, M. Pietikainen. A Texture-Based Method for Modeling the Background and Detecting Moving Objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,28 : 657-662.
  • 7Zivkovic Z. Improved adaptive Gaussian mixture model for background subtraction[C]//Proceeding of the 17th International Conference on Pattern Recognition, Cambridge UK,2004:28-31.
  • 8Elgammal A, Duraiswami R, Harwood D, et al. Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance[J]. Proceedings of the IEEE, 2002,90(7): 1151-1163.
  • 9Sheikh Y, Shah M. Bayesian modeling of dynamic scenes for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (11) : 1778-1792.
  • 10TMS320DM642 Video/Imaging Fixed-Point Digital Signal Processo(Rev)[R].Texas Instruments Incorporated,2004.8

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部