期刊文献+

非线性时间序列建模的混合自回归滑动平均模型 被引量:16

Mixed autoregressive moving average model for modeling nonlinear time series
下载PDF
导出
摘要 提出了一类用于非线性时间序列建模的混合自回归滑动平均模型(MARMA).该模型是由K个平稳或非平稳的ARMA分量经过混合得到的.讨论了MARMA模型的平稳性条件和自相关函数.给出了MARMA模型参数估计的期望极大化(expectation maximization)算法.运用贝叶斯信息准则(Bayes information criterion)来选择该模型.MARMA模型分布形式富于变化的特征使得它能够对具有多峰分布以及条件异方差的序列进行建模.通过两个实例验证了该模型,并和其他模型进行比较,结果表明MARMA模型能够更好地描述这些数据的特征. A mixed autoregressive moving average (MARMA) model is proposed for modeling nonlinear time series. The model consists of K stationary or nonstationary ARMA components. The stationary conditions and autocorrelation function of the MARMA process are investigated. The estimation of parameters is easily perfomaed via expectation maximization (EM) algorithrn. The Bayes information criterion (BIC) is used as a tool for the MARMA model selection. The varried feature of conditional distributions of the MARMA model makes it capable of modeling time series with multimodal conditional distributions and with hetero scedasticity. The model is applied to two real data sets and compared with other competing models. The MARMA model appears to capture features of the data better than other competing models do.
作者 王红军 田铮
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2005年第6期875-881,共7页 Control Theory & Applications
基金 国家自然科学基金资助项目(60375003) 国家航空基金资助项目(03I53059)
关键词 混合自回归滑动平均模型 自相关 平稳性 期望极大化算法 条件异方差 mixed autoregressive moving average (MARMA) model autocorrelation stationarity EM ( expectationmaximization) algorithm heteroscedasticity
  • 相关文献

参考文献8

  • 1LE N D,MARTIN R,RAFTERY A E.Modeling flat stretches,bursts,and outliers in time series using mixture transition distribution models [J].J of the American Statistical Association,1996,91(436):1504-1515.
  • 2WONG C S,LI W K.On a mixture autoregressive model [J].J of the Royal Statistical Society,2000,62,part 1:95-115.
  • 3BENES V E.Existence of finite invariant measures for Markov processes [J].Proc of the American Mathematical Society,1967,18(6):1058-1061.
  • 4LOUIS T A.Finding the observed information matrix when using the EM algorithm [J].J of the Royal Statistical Society,1982,44(2):226-233.
  • 5茆诗松,王静龙,濮小龙.高等数理统计[M].北京:高等教育出版社;Heidelberg,Berlin:Springer-Verlag,1998.
  • 6杨叔子 吴雅.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1994..
  • 7BOX G E P,JENKINS G M,REINSEL G C.Time Series Analysis:Forecasting and Control [M].3rd ed.Engle-wood Cliffs,NJ:Prentice Hall,1994.
  • 8TONG H.Non-linear Time Series [M].New York:Oxford University Press,1990.

共引文献24

同被引文献163

引证文献16

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部