期刊文献+

基于神经网络的注塑机注射速度的迭代学习控制 被引量:4

Ram velocity control in plastic injection molding machines with iterative network control
下载PDF
导出
摘要 对具有不确定性和干扰项的重复非线性注塑机控制系统,尤其是注射速度的控制,提出基于神经网络的迭代学习控制器,其中迭代学习控制器设计为神经网络控制器,它以前馈方式作用于对象。PD反馈控制器用于使系统达到稳定,同时和前馈的神经网络学习控制器一起使系统达到理想的控制效果。仿真结果表明,该控制器可以随着迭代次数的增加有效减小跟踪误差。 Iterative learning controller based on neural network is presented for repetitive nonlinear plastic injection molding machine with uncertainty and disturbance, especially for injection speed control. The iterative learning controller is designed as the neural network controller, which acts on objects in the form of feed forward. By PD controller which is used to make system more stable, the system can reach ideal control effects with the feed forward neural learning controller. The simulation results indicate that the controller can effectively reduce tracking errors along with the increasing iterative times.
出处 《计算机辅助工程》 2005年第4期71-74,共4页 Computer Aided Engineering
关键词 神经网络 迭代学习 反馈控制 逆模型 PID neural network iterative learning feedback control inverse dynamic model PID
  • 相关文献

参考文献6

  • 1PANDELIDIS I O, AGRAWAL, A R. Optimal anticipatory control of ram velocity in injection molding [J], Polymer Eng. and Sci. 1988, 28:147-156.
  • 2ZHANG C Y, LEONARD J, SPEIGHT R G. Adaptive controller performance used for ram velocity control during filling phase [A]. SPE Annual Technical Papers [C]. 1996, 593-597.
  • 3WEI J H, CHANG C C. CHIU C P. A nonlinear dynamic model of a servo-pump controlled injection molding machine [J]. Polymer Eng. Sci.,1994, 34(11): 881-887.
  • 4RAFIZADEH M, PATTERSON W I, KAMAL M R. Physically-based model of thermoplastics injection molding for control applications [J].Int. Polymer Processing, 1996, 11(4): 352-361.
  • 5XIAO J Z, SONG Q, WANG D W. A learning control scheme based on neural network for repeatable robot trajectory tracking [A]. 14th IEEE Symposium on Intelligent Control/Intelligent Systems and Semiotics [C]ISIC/ISAS'99, USA (1999).
  • 6HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators [J]. Neural Networks, 1989(2):359-366.

同被引文献36

  • 1左云波,张怀存.一种改进的BP网络快速算法[J].北京机械工业学院学报,2005,20(1):31-34. 被引量:13
  • 2权龙,王成宾.伺服电动机定量液压泵驱动的注塑机电液控制系统分析[J].液压气动与密封,2005,25(4):16-20. 被引量:6
  • 3Tian Y C,Gao F R.Injection velocity control of thermoplastic injection molding via a double controller scheme[J].Industrial & Engineering Chemistry Research,1999,38(9):3396~3406.
  • 4Tan K K,Huang S N,Jiang X.Adaptive control of ram velocity for the injection moulding machine[J].IEEE Transactions on Control Systems Technology,2001,9(4):663~671.
  • 5Gao F R,Yi Y,Cheng S.Robust iterative learning control with applications to injection molding process[J].Chemical Engineering Science,2001,56:7025~7034.
  • 6Havlicsek H,Alleyne A.Nonlinear modeling of an electrohydraulic injection molding machine[A].Proceedings of the American Control Conference (vol.1)[C].Piscataway,NJ,USA:IEEE,1999.171~175.
  • 7Elci H,Longman R W,Phan M Q,et al.Simple learning control made practical by zero-phase filtering:Applications to robotics[J].IEEE Transactions on Circuits and Systems-Ⅰ:Fundamental Theory and Applications,2002,49(6):753~767.
  • 8Phan M Q,Longman R W,Moore K L.Unified formulation of linear iterative learning control[J].Advances in the Astronautical Science,2000,105 Ⅰ:93~111.
  • 9Longman R W.Iterative learning control and repetitive control for engineering practice[J].International Journal of Control,2000,73(10):930~954.
  • 10Songchon T,Longman R W.On the waterbed effect and repetitive control using zero-phase filtering[J].Advances in the Astronantical Sciences,2001,108(2):1321~1340.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部