期刊文献+

一类二阶奇异边值问题的正解

POSITIVE SOLUTIONS OF A SINGULAR NONLINEAR TWO-ORDER BOUNDARY VALUE PROBLEM
下载PDF
导出
摘要 应用锥上不动点定理,建立了一类二阶奇异非线性边值问题的正解的一个存在性定理. By simple application of the fixed - point theorem in cones, an existence theorem of positive solution is established to a singular nonlinear Tow -order boundary value problem u^n(t)+a(t)f(u)=0,0〈t〈1 au(0)-βu'(0)=0,γu(1)+δu'(1)=0 where α,β,γ≥0,δ〉0 is a constant,α∈C((0,1)[0,∞)),f∈C([0,+∞),[0+∞)).
机构地区 南通大学
出处 《哈尔滨师范大学自然科学学报》 CAS 2005年第6期17-19,共3页 Natural Science Journal of Harbin Normal University
基金 南通工学院自然科学基金资助(院自200384)
关键词 二阶奇异非线性边值问题 锥上不动点定理 正解存在性 Singular nonlinear two -order boundary value problem The fixed -point theorem in cones Existences of positive solutions
  • 相关文献

参考文献5

二级参考文献23

  • 1Agarwal R. P., O'Regan D., Nonlinear superlinear singular and nonsingular second order boundary value problems, J. Differential Equations, 1998, 143: 60-95.
  • 2Sun Y. J., Wu Y. P., On a singular nonlinear elliptic boundary value problem, Chinese Ann. of Math., Ser.A, 2000, 21(4): 437-448.
  • 3Habets P., Zanolin F., Upper and lower solutions for a generalized Emden-Fowler equation, J. Math. Anal.Appl., 1994, 181: 684-700.
  • 4Coster C. D., Pairs of positove solutions for the one-dimensional p-Laplacian, Nonlinear Analysis, 1994, 23:669-681.
  • 5Manasevich R., Zanolin F., Time mappings and multiplicity of solutions for the one-dimensional p-Laplacian,Nonlinear Analysis, 1993, 21: 269-291.
  • 6Wang J. Y., Jiang D. Q., A unified approach to some two-point, three-point and four-point boundary value problems with Caratheodory functions, J. Math. Anal. Appl., 1997, 211: 223-232.
  • 7O'Regan D., Some general existence principles and results for [φ(y')]' = q(t)f(t, y, y') (0<t<1), SIAM J.Math. Anal., 1993, 24(3): 648-668.
  • 8Wang J. Y., Gao W. J., Lin Z. H., Boundary value problems for general second order equations and similarity solutions to the Rayleigh problem, Tohoku Math. J., 1995, 47: 327-344.
  • 9Wang J. Y. Gao W. J., A singular boundary value problem for the one-dimensional p-Laplacian, J. Math.Anal. Appl., 1996, 201: 851-866.
  • 10Jiang D. Q., Liu H. Z., On the existence of nonnegative radial solutions for p-Laplacian elliptic systems, Ann.Polon. Math., 1999, 71(1): 19-29.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部