期刊文献+

通过激发转移和碰撞能量合并研究Rb 5~2P精细结构混合

Fine-structure mixing in 52p Rb atoms studied through excitation transfer and energy-pooling collisions
下载PDF
导出
摘要 利用单模半导体激光器激发Rb原子到5P3/2态,将Rb空心阴极灯发射的6D5/2→5P3/2的 629.8 nm线作为吸收线。测量5P3/2态原子密度,由测得的激发态原子密度结合荧光强度比,得到能量合并过 程Rb(5P3/2)+Rb(5P3/2)→Rb(5D)+Rb(5S)的碰撞截面为(5.0±1.9)×10-14cm2。利用荧光法测量了Rb52P 精细结构碰撞转移截面。直接荧光是由5P3/2态发射的,敏化荧光是由精细结构碰撞转移和碰撞能量合并产生 的。由相对荧光强度得到了转移截面σ(5P3/2→5P1/2)=(3.0±0.9)×10-15cm2。碰撞能量合并速率系数比精 细结构混合率大一个数量级,与其它实验结果进行了比较。 Rb atoms were excited to the 5P3/2 level using a single-mode laser diode. The 5P3/2 state atom density was measured bv the absorption of line from a Rb hollow-cathode lamp. The excited atom density is combined with measured fluorescence ratio to determine collisional cross section for the energy pooling process [i.e. Rb(5P3/2)+Rb(5P3/2)→Rb(5D)+Rb(5S)]. The cross section is (5.0+1.9)×10^-14cm^2. Cross section for 5P3/2 →5P1/2 transfer in Rb, induced in collision with ground-state Rb atoms, has been determined using methods of atomic fluorescence. The resulting fluorescence included a direct component arising from the optically excited state and a sensitized component due to the collisionally populated fine-structure state and the energy-pooling collisions. Measurement of relative intensities of the two components yielded the following cross section: σ (5P3/2 →5P1/2)=(3.0+0.9) ×10^-15cm^2. it is found that the rate for the energy pooling is an order of magnitude more efficient than 5P3/2→5P1/2 mixture. Comparisons of our result with other experiments have been made.
机构地区 新疆大学物理系
出处 《量子电子学报》 CAS CSCD 北大核心 2005年第6期863-867,共5页 Chinese Journal of Quantum Electronics
基金 国家自然科学基金项目(10264004)
关键词 光谱学 碰撞转移 荧光 RB spectroscopy collisional transfer fluorescence Rb
  • 相关文献

参考文献10

  • 1Huennekens J, Gallagher A. Self-broadening of the sodium resonance lines and excitation transfer between the 3P3/2 and 3P1/2 levels [J]. Phys. Rev., 1983, A27(4): 1851-1863.
  • 2Barbier L, Che'ret M. Energy pooling process in rubidium vapour [J]. J. Phys., 1983, B16: 3213-3228.
  • 3Jabbour Z J, Namiotka R K, Huennekens J, et al. Energy-pooling collisions in cesium:6PJ+6PJ →6S+(nl=7P,6D, 8S, 4F) [J]. Phys. Rev., 1996, A54(2): 1372-1384.
  • 4Gallagher A, Lewis E L. Determination of the vapor pressure of rubidium by optical obsorption [J]. J. Opt. Soc.Am., 1973, 63(7): 864-869.
  • 5Gabbanini C, Gozzinis,szuadrito G, et al. Energy pooling collisions for K(4P)+Rb(5P) and Na(3P)+Rb(5P) heteronuclear systems [J]. Phys. Rev., 1989, 39(12): 6148-6153.
  • 6Tai C, Happer W, Gupta R. Hyperfine structure and lifetime measurements of the second-excited D states of rubidium and cesium by cascade fluorescence spectroscopy [J]. Phys. Rev., 1975, 12(3): 736-747.
  • 7沈异凡,李万兴.激发态Na(3P)原子的碰撞缔合电离[J].物理学报,1993,42(1):32-39. 被引量:3
  • 8Linyidon WangWei etal.Fine—structure transition cross sections in collisions of Rb(5P) with molecules [J].原子分子物理学报,1988,5(1):687-694.
  • 9王谨,胡正发,张登玉,詹明生.Rb原子激发态碰撞能量转移[J].物理学报,1998,47(8):1265-1271. 被引量:4
  • 10沈异凡,沈晓燕.Cs-K混合蒸气中Cs(8D)+K(4S)碰撞能量转移[J].量子电子学报,2004,21(1):11-14. 被引量:3

二级参考文献4

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部