摘要
运用变分法研究了雪茄形的调谐势阱中两个玻色-爱因斯坦凝聚(BEC)孤子间的交换和自陷特性,运 用常规的线性稳定分析法讨论了非线性薛定谔方程同相和反相定态解的稳定性。结果指出,雪茄形势阱对BEC 系统的演化、孤子间粒子数的迁移率有明显影响,改变了两个BEC孤子间的交换与自陷特性。
The characteristics of switching and self-trapping of two Bose-Einstein condensate (BEC) solitons trapped in the cigar-shaped harmonic traps are investigated by the variational approach. The effects of the cigar-shaped traps on the in-phase and the out-of phase solutions of the NLSE in the stationary states are discussed by performing a standard linear stability analysis. It is shown that the cigar-shaped traps affect the evolution of the BEC shift population transferring ratio, and change the characteristics of switching and self-trapping of two BEC solitons.
出处
《量子电子学报》
CAS
CSCD
北大核心
2005年第6期879-883,共5页
Chinese Journal of Quantum Electronics
基金
湖北省教育厅科技项目(No.B20052202)
湖北省教育厅重大项目(No.2002Z00005)资助
关键词
量子光学
玻色-爱因斯坦凝聚
孤子
雪茄形势阱
交换
自陷
quantum optics
Bose-Einstein condensate
soliton
cigar-shaped trap
switching
self-trapping