期刊文献+

流域产沙量预测的神经网络模型 被引量:2

Forecasting Model of Drainage Basin Sediment Yielding Based on Neural Networks
下载PDF
导出
摘要 流域产沙量演变规律的研究对于工程设计、水土流失规划与治理具有重要作用。由于其影响因素多、演变过程复杂,目前,对流域产沙量的研究主要侧重于定性分析,这就造成了缺乏理论基础及精度不高的缺陷。人工神经网络能以非显式表示产沙量与其影响因素之间的非线性复杂关系,将其应用到流域产沙量的拟合与预测中,在改进BP网络不足及优化确定网络结构的基础上,建立了云南楚雄州龙川江流域产沙量预测模型,通过对预测样本的检验,表明其具有比较高的精度,基本能够反映龙川江流域产沙量的演变规律。 The research on evolvement law of drainage basin sediment yielding plays an important role in design of a project, planning and control of soil erosion. Because of multi - factor' s impact and complex evolvement process the research on sediment yielding is at present focused on qualitative analysis. It is not based on the sound theory and its resuits are not of high precision. The artificial neutral networks can show the non - linear relation between sediment yielding and its impact factors in a blurry way and can be applied to simulating and forecasting of sediment yielding. Having improved the BP networks and optimized the networks framework the forecasting model of sediment yielding in the Long- chuan river basin in Yunnan province has been established. The test of the samples indicates that the model can basically reflect the evolvement law of sediment yielding with high accuracy in the Longchuan river basin.
出处 《云南水力发电》 2005年第6期11-14,共4页 Yunnan Water Power
基金 国家重点基础研究发展计划项目(2003CB415202) 四川省学术带头人培养基金项目(2200118)
关键词 BP网络 产沙 拟合 预测 BP neutral networks sediment yielding simulation forecasting
  • 相关文献

参考文献6

  • 1周永德.对大凌河上游(西支)产沙量的分析[J].水土保持科技情报,2004,22(3):7-8. 被引量:1
  • 2晋华,孙西欢,李仰斌.岚河流域产沙量的影响因素分析[J].太原理工大学学报,2004,35(1):84-85. 被引量:2
  • 3王伟.人工神经网络原理[M].北京:北京航空航天大学出版社,1995.20-76.
  • 4Hecht-NielsenR. Theoryofthebackpropagafionneuralnetwork[C]. Proc,ofIJCNN, 1989(1):593-684.
  • 5吴骁.人工神经网络在暴雨预测中的应用[M].北京:科学出版社,1993.76-104.
  • 6WeigendAS., RumelhartDE., HubermanBA., Predictingthefuture: aconnectionistapproach[J]. IntemationalJoumalofNeuralSystems, 1990, 1(3):193-209.

二级参考文献5

共引文献45

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部