期刊文献+

面板堆石坝沉降变形预测的神经网络方法 被引量:2

Neural networks method for predicting settlement deformation of concrete face rockfill dam
下载PDF
导出
摘要 运用MATLAB语言提供的newff函数创建BP神经网络,研究面板堆石坝坝体最大沉降变形与坝高、坝体变形模量和河谷形态之间的内在联系.对样本集内的数据采用lnx函数进行非线性变换和比例归一化处理,使样本数据分布于[0.2,0.8]区间内,可改善网络的性能.对网络结构及训练样本的确定进行了分析,通过工程应用验证网络结构的可靠性及预测精度.结果表明,用试错法确定的网络结构是可靠稳定的,对坝体最大沉降变形预测的精度高于常用的工程类比法,此方法可应用于实际工程. The relationships between the maximum settlement deformation of concrete face rockfill dam (CFRD) and dam height, deformation modulus of rockfill materials, and topographic conditions of dam site have been researched by constructing BP neural networks with Newff function of MATLAB language. The raw data in specimen set were taken nonlinear transformation using lnx function and normalization in proportion. It can improve the functions of networks to make the data in specimen set distribute in [0.2, 0.8]. Selections of the network structures and training specimen were discussed; the reliability and prediction accuracy of the network structures have been verified by applications of them to engineering. The results show that the network structures determined by trial and error procedure are of reliability and stability; the accuracy of prediction of the maximum settlement deformation of CFRD is better than one of engineering analogy method; the method proposed can be applied to engineering practice.
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2005年第6期24-27,44,共5页 Engineering Journal of Wuhan University
关键词 面板堆石坝 坝体最大沉降变形 预测 BP神经网络方法 数据变换 concrete face rockfill dam maximum settlement deformation of dam prediction BP neural networks method data transformation
  • 相关文献

参考文献1

二级参考文献3

  • 1洪毓康.土质学与土力学[M].北京:人民交通出版社,1995..
  • 2-.天生桥一级水电站混凝土面板堆石坝安全监测资料反馈分析[M].昆明水电勘测设计研究院,2000,3..
  • 3沈珠江,赵魁芝.堆石坝流变变形的反馈分析[J].水利学报,1998,29(6):1-6. 被引量:121

共引文献20

同被引文献14

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部