期刊文献+

工程优化数学模型的预处理分析 被引量:1

An Analysis of Engineering Optimal Mathematical Model Preprocessing
下载PDF
导出
摘要 工程优化数学模型预处理是对模型构成要素的一系列规范化处理过程。为了方便采用遗传算法对优化模型的求解,提出对目标函数、优化变量及约束因子在优化前进行预处理。在分析惩罚函数法对约束处理效率较低的情况下,提出了一种基于知识调整策略的修正法,对解码中不满足约束的映射关系进行修正,使调整后个体映射到最有希望获得最优解的空间中。理论分析和测试数据表明:对优化数学模型采用适当的预处理,简化了优化设计过程,加速了算法的收敛速度,同时提高了最优解的质量。 Engineering optimization mathematical model preprocessing is a series of standardized treatment processes of the model elements. In order to facilitate solving it using genetic algorithm, the preprocessing methods of optimization objectives, optimization variables and constraints are presented. On the basis of analyzing limitation of using penalty function method dealing with constraints,an amending method based on the knowlege regulating strategy is suggested to amende the mapping relationship of infeasible constraints in decoding, thus making the regulated individuals map into the space to obtain the most promising optimal solution. The theoretical analysis and test result show that the proper preprocessing an appropriate preprocessing of the optimization mathematical model can simplify the optimal design process, accelerate the algorithm convergence speed ,and at the same time ,improve the best solution quality.
出处 《西安理工大学学报》 CAS 2005年第4期374-378,共5页 Journal of Xi'an University of Technology
基金 陕西省教育厅自然科学基金资助项目(05JK273)
关键词 遗传算法 数学模型 预处理 知识 修正法 约束因子 genetic algorithm mathematical model preprocessing knowledge amending method constraint
  • 相关文献

参考文献9

  • 1Michalewicz Z,Schoenauer M. Evolutionary algorithms for constrained parameter optimization problems[J]. Evolutionary Computation, 1996,4(1): 1-32.
  • 2Michalewicz Z,Janikow C Z. Handling constraints in genetic algorithms[A]. Proc of the 4th Int'l Conf on Genetic Algorithms[C]. Morgan Kaufmann,Los Altos, 1991:151-157.
  • 3Michalewicz Z,Nazhiyath G. Genocop Ⅲ :A co-evolutionary algorithm for numerical optimization problems with nonlinear constraints[A]. Proceedings of the 2nd IEEE International Conference on Evolutionary Computation, 1995,2:647-651.
  • 4Lin C -Y,Wu W -H. Self-organizing adaptive penalty strategy in constrained genetic search[J]. Structural and Multidisciplinary Optimization, 2004,26: 417-428.
  • 5Goldberg D E. Genetic algorithms in search,optimization and machine learning[M]. Boston USA:Addison-Wesley,1989.
  • 6Horn J,N Nafpliotis,D Goldberg. A niched pareto genetic algorithm for multiobjective optimization[A]. Proceedings of the First IEEE conference on Evolutionary computation[C]. IEEE Press,Piscataway,NJ,1994:82-86.
  • 7王竹荣,崔杜武,张毅坤,姚全珠.基于遗传算法的整流变压器的优化设计[J].电工技术学报,2004,19(5):6-9. 被引量:6
  • 8Wang Zhu-rong,Cui Du-wu,Zhou Hong-fang,et al. Optimization design of rectifier transformer coil based on genetic algorithm[A]. The 4th International Power Electronics and Motion Control Conference,2004:549-552.
  • 9王竹荣,崔杜武,张毅坤,王超学.一种新的动态编码方法的研究[J].计算机工程,2005,31(6):140-141. 被引量:2

二级参考文献8

共引文献6

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部