期刊文献+

四重马氏平稳过程的非线性预测问题(英文)

Non-linear Prediction Problemof Quadruple Markov Stationary Processes
下载PDF
导出
摘要 假设{X(t),t∈R1}是由广义Wiener随机积分所定义的四重马氏平稳过程.首先粗略地研讨了四重马氏平稳过程{X(t),t∈R1}及其均方导数的一些概率性质.其次,如果这随机过程{X(t),t∈R1}被一有界Borel可测函数f(.)变换,则得到新的随机过程,记为Y(t)=f(X(t)).对于一些构造较简单的Borel可测函数f(.),较详细地探讨了随机过程Y(t)=f(X(t))的非线性均方预测问题,给出了非线性均方预测的理论依据和实例. In this paper, the authors at first roughly discuss some probabilistic properties of the quadruple Markov stationary process { X( t ), t ∈R^1} t and so forth. Moreover, let { X( t ), t ∈R^1} t be a quadruple Markov stationary process which is defined by a generalized Wiener integral. If the stochastic process {X( t ), t∈R^1} t is transformed by a bounded Borel measurable function f(· ), then we obtain a new stochastic process which denotes by Y( t ), namely Y( t ) = f(X( t ) ). The authors deal with the nonlinear mean-square predictors of the stochastic processes Y ( t ) = f( X ( t ) ) for some simple Borel function.s f(·). The result and example of the non-linear mean-square predictors is given.
机构地区 沈阳化工学院
出处 《沈阳化工学院学报》 2005年第4期301-307,共7页 Journal of Shenyang Institute of Chemical Technolgy
关键词 广义布朗运动过程 广义Wiener积分 四重马氏平稳过程 最佳非线性预测量 generalized Brownian motion process generalized Wiener integral quadruple Markov stationary process best non-linear predictor
  • 相关文献

参考文献2

二级参考文献4

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部