期刊文献+

一类不可微规划的Kuhn-Tucker充分条件及其对偶理论

SUFFICIENCY OF THE KUHN-TUCKER CONDITION AND DUAL THEORIES FOR A CLASS OF NONSMOOTH OPTIMIZATION
下载PDF
导出
摘要 对局部Lipschitz函数引进了广义凸性的概念,并在广义凸性下讨论了一类不可微规划的Kuhn- Tucker充分条件及其Mond- weir型对偶的各种对偶定理. The concepts of generalized B-invex functions, generalized pseudo-B-invex functions and quasi-B-invex functions are proposed, and the sufficiency of Kuhn-Tucker condition and the dual theories on non-smooth programming under the generalized convexity conditions are discussed.
机构地区 石油大学数理系
出处 《石油大学学报(自然科学版)》 CSCD 1996年第4期99-101,共3页 Journal of the University of Petroleum,China(Edition of Natural Science)
基金 石油大学校基金资助项目.
关键词 不可微函数 规划 凸性 对偶理论 Non-differentiable function Programming Convexity Dual theory
  • 相关文献

参考文献3

  • 1C. R. Bector,S. K. Suneja,C. S. Lalitha. Generalized B-vex functions and generalized B-vex programming[J] 1993,Journal of Optimization Theory and Applications(3):561~576
  • 2S. K. Suneja,C. Singh,C. R. Bector. Generalization of preinvex and B-vex functions[J] 1993,Journal of Optimization Theory and Applications(3):577~587
  • 3C. R. Bector,C. Singh. B-vex functions[J] 1991,Journal of Optimization Theory and Applications(2):237~253

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部