摘要
介绍了用两段光滑连接的圆弧曲线来代替矩形花键精滚刀的法向理论超越方程曲线。对于圆弧与超越方程曲线的啮合,运用了最小二乘法,使其法向齿形误差达到最小。运用数值分析对内切双圆弧进行求解。实例显示,其齿形误差精度可控制在0.01 mm以内,完全能满足精加工要求。
This paper presents the “smooth-connection circular”methed to replace the transcendental equation curve of normal theory on rectangle spline refined hob. To the gear of circular and transcendental equation curve,the employment of least squares fit decreases the error to its greatest degree. The determination of twin circular is realized through software calculation. An example illustrates the gear approaching precision is within the range of O. O1 mm,and could meet the needs of finishing machines.
出处
《浙江科技学院学报》
CAS
2005年第4期261-263,共3页
Journal of Zhejiang University of Science and Technology
关键词
矩形花键精滚刀
双圆板
最小二乘法
误差最小
rectangle spline refined hob
twin circular flat-plate
least squares fit
error minimum