期刊文献+

基于数据挖掘机制的卫星遥感信息智能处理方法研究 被引量:2

A Study on the Data Mining Strategy Based Intelligent Information Processing Technologies for Satellite Remote Sensing
下载PDF
导出
摘要 以北京市农业种植结构调整监测为对象,借鉴数据挖掘和知识发现的最新成果,从对遥感数据的信息论分析出发,探讨适合于农业应用的卫星遥感数据挖掘与知识发现的关键技术。研究试验表明,该方法有利于提高遥感信息农业应用过程中数据处理和信息提取的能力与效率,具有较好的应用价值和前景。 Aimed at the information demands for monitoring the adjustment of agricultural planting structure, a study on the key technologies of intelligent information processing is presented for satellite remote sensing based on data mining and knowledge discovery strategy as well as information theory, which is suitable for agriculture applications. It has resulted in a good capability and efficiency for satellite data processing and information extraction by performing a test on extracting the winter wheat distribution of Beijing from Landsat image, together with the status of agricultural structure adjustment. It is thus expected to follow a prospect application.
出处 《科学技术与工程》 2005年第24期1911-1915,共5页 Science Technology and Engineering
基金 国家自然科学基金(60272032)资助
关键词 数据挖掘 卫星遥感 智能处理 农业结构调整 data mining satellite remote sensing intelligent processing agriculture structure adjustment
  • 相关文献

参考文献4

二级参考文献8

共引文献66

同被引文献22

  • 1高峰,冯筠,侯春梅,陈春.世界主要国家对地观测技术发展策略[J].遥感技术与应用,2006,21(6):565-576. 被引量:14
  • 2Forecast International. The market for civil & commercial remote sensing satellites. Analysis Report. Newtown: Forecast International, 2013. 2013-2022.
  • 3Wei J B, Liu D S, Wang L Z. A general metric and parallel framework for adaptive image fusion in clusters. Concurr Comp-Pract E, 2014, 26: 1375-1387.
  • 4Zhang W F, Wang L Z, Liu D S, et al. Towards building a multi-datacenter infrastructure for massive remote sensing image processing. Concurr Comp-Pract E, 2013, 25: 1798-1812.
  • 5Ma Y, Zhao L J, Liu D S. An asynchronous parallelized and scalable image resampling algorithm with parallel I/O. In: Gabrielle A, Jaroslaw N, Edward S, et al., eds. Proceedings of ICCS 2009, Part II, LNCS 5545. Heidelberg: Springer, 2009. 357-366.
  • 6Li G, Ma Y, Wang J, et al. Preliminary through-out research on parallel-based remote sensing image processing. In: Vassil N A, Geert D V A, Peter M A S, et al., eds. Proceedings of ICCS 2006, LNCS 3991. Heidelberg: Springer, 2006. 880-883.
  • 7Ma Y, Wang L Z, Liu D S, et al. Distributed data structure templates for data-intensive remote sensing applications. Concurr Comp-Pract E, 2013, 25: 1784-1797.
  • 8Ma Y, Wang L Z, Liu D S, et al. Generic parallel programming for massive remote sensing data processing. In: Cluster Computing (CLUSTER), 2012 IEEE International Conference. Beijing: IEEE, 2012. 420-428.
  • 9Zhang W, Wang L Z, Ma Y, et al. Design and implementation of task scheduling strategies for massive remote sensing data processing across multiple data centers. Software Pract Exper, 2014, 44: 873-886.
  • 10Ma Y, Wang L Z, Albert Y, et al. Task-Tree Based Large-Scale Mosaicking for massive remote sensed imageries with dynamic DAG scheduling. IEEE T Parall Distr, 2014, 25: 2126-2137.

引证文献2

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部