期刊文献+

基于期望系统噪声模型的自适应机动目标跟踪 被引量:1

Adaptive Maneuvering Target Tracking Based on Expected System Noise Model
下载PDF
导出
摘要 对于机动目标跟踪问题,由于目标机动能力的增强,使建立的目标模型与目标的实际运动失配。为解决这个问题,需建立大量模型来逼近真实模式。但这使计算量增大,而且性能不一定能提高。本文提出基于期望系统噪声模型的自适应交互式多模型(IMM)算法。该算法自适应调整部分系统噪声模型,使之接近符合实际的系统噪声模型。对目标机动运动的Monte-Carlo仿真结果表明,本算法对机动目标的跟踪精度比标准IMM算法有较大改进,且计算量适中。 For maneuvering target tracking, the increase in the maneuvering capability of targets makes the established models mismatch the true modes of maneuvering targets. Lots of models need to be established to approach the true mode in order to solve it. But this brings on dramatic increase in calculation, and cannot always improve the performance of the system. An interacting multiple model (IMM) adaptive filtering algorithm based on expected system noise model was presented. In this approach, a part of the system noise models are intended to adaptively match the unknown true mode. Comparison between the new algorithm and the standard IMM algorithm is evaluated though Monte-Carlo simulation. The results show that this algorithm improves the tracking accuracy for maneuvering targets and involves only moderate amount of the computation.
出处 《兵工学报》 EI CAS CSCD 北大核心 2005年第6期787-790,共4页 Acta Armamentarii
关键词 自动控制技术 目标跟踪 自适应 交互式多模型 期望系统噪声模型 automatic controlling technique target tracking adaptive IMM expected system noise model
  • 相关文献

参考文献7

  • 1Johnston L A, Krishnamurthy V. An improvement to the interacting multiple model (IMM) algorithm [J ]. IEEE Trans on Signal Processing, 2001, 49(12) : 2909 - 2923.
  • 2Mazor E, Averbuch A, Bar-Shalom Y, et al. Interacting multiple methods in target tracking: a survey [J ]. IEEE Trans on Aerospace and Electronic Systems, 1998, 34(1) : 103 - 123.
  • 3Li X R. Multiple-model estimation with variable structure-part Ⅱ : model-set adaptation [ J ]. IEEE Trans Automatic Control,2000, 45(11), 2047-2060.
  • 4丁振,潘泉,张洪才,戴冠中.新息滤波交互式多模型噪声辨识算法[J].电子学报,1997,25(5):95-98. 被引量:14
  • 5朱洪艳,韩红,韩崇昭,赵广社.一种改进的多模型噪声辨识方法[J].系统仿真学报,2003,15(6):800-803. 被引量:3
  • 6Li X R, Jilkov V P. Expected-mode augmentation for multiplemodel estimation[ A]. Proe of 4th International Information Fusion Conference[C]. Montreal. QC, Canada, 2001: 3-10.
  • 7Li X R, Zhi Xiaorong, Zhang Youmin. Multiple-model estimation with variable structure part Ⅲ: model-group switching algorithm[J ]. IEEE Trans on Aerospace and Electronic Systems, 1999, 35(1): 225-241.

二级参考文献11

  • 1Li X R, Bar-Shalom. Multiple-model estimation with variable structure[J]. IEEE Trans. Automatic Control, 1996, 41: 478-493.
  • 2Quach T, Farooq M. Maximum Likelihood Track Formation with the Viterbi Algorithm [A]. In proceedings of the 33^rd conference on Decision and Control, 1994, 271-277.
  • 3Blom H A P, Bar-Shalom Y.The interacting multiple model algorithm for systems with markovian swishing coefficients [J]. IEEE Trans.Automatic Control, 1988, 33(8): 780-783.
  • 4Wolf J K,Viterbi A M. Finding the best set of K paths through a trellis.with applications to multitarget tracking [J]. IEEE. Trans. AES, 1989,25(2): 287-295.
  • 5Mazor E, Averbuch A, Bar-Shalom Y, and Dayan J. Interacting multiple model methods in multiple- multiple tracking: A Survey[J].IEEE Trans. Aerospace & Electronic Systems. 1998.34(1): 103-122.
  • 6Pan Q, Liang Y, Liu G. Performance analysis of interacting multiple model algorithm [A]. In proceedings of 14th World Congress of International Federation of Automatic Control. Bei- jing: IFAC. 1999,163-166.
  • 7Li X R. A Recursive Multiple Model Approach Noise Identification[J].IEEE Trans. AES, 1994, 30(3).
  • 8Li X R,IEEE Trans AES,1994年,30卷,3期,671页
  • 9潘泉,西北工业大学学报,1993年,11期,211页
  • 10潘泉,Proc of 1991 Inter Conterence on Circuit and system,1991年

共引文献15

同被引文献9

  • 1潘泉.机动目标跟踪双滤波器模型及自适应算法[J].控制理论与应用,1995,12(4):482-486. 被引量:7
  • 2李辉,沈莹,张安,程琤.交互式多模型目标跟踪的研究现状及发展趋势[J].火力与指挥控制,2006,31(11):1-4. 被引量:26
  • 3刘建书,李人厚,张贞耀,刘云龙.交互式多模型算法的模型集设计[J].控制与决策,2007,22(3):326-328. 被引量:14
  • 4Biota H A P.An Efficient Filter for Abruptly Changing Systems Proceedings of IEEE 23rd Conference on Decision and Control[C] //Lasvegas,1984.
  • 5Blom H A P,Bar-Shalom Y.The Interacting Multiple Model Algorithm for System with Markovian Switching Coefficients[J].IEEE Trans on AC,1988,23(8):780-783.
  • 6Mazor E,Dayan J,Bar-Shalom Y.Interacting Multiple Model Methods in Target Tracking:A Survey[J].IEEE Trans on Aerospace and Electronic Systems,1998,34(1):103-124.
  • 7Li X R,Bar-shalom Y.Multiple Model Estimation with Variable Structure[J].IEEE Transaction on Automatic Control,1996,24(1):478-493.
  • 8Kirubarajan T,Bar-shalom Y,Pattipatik P,et al.Ground Target Tracking with Variable Structure IMM Estimator[J].IEEE Transaction on Aerospace and Electronic Systems,2000,36(1):26-44.
  • 9Li X R,Jilkov V P.Expected-mode Augmentation for Multiple Model Estimation Proc of 4th Information Fusion Conference[C] //Montreal.QC,Canada,2001:3-10.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部