期刊文献+

基于神经网络的PP/CaCO_3复合材料的力学性能预测 被引量:4

Prediction Model of Mechanical Properties for PP/CaCO_3 Composite Material Based on Artificial Neural Network
下载PDF
导出
摘要 研究利用BP网络建立了对PP/CaCO3复合材料性能进行预测的模型,并在此基础上建立了PP/CaCO3复合材料拉伸强度、冲击强度和复合态结构之间的关系。结果表明,该模型有着较好可信度,与实验现象也有着较好的符合;利用该模型证明了分散相粒子粒间距、EPDM层厚度是影响其材料冲击强度,并决定其脆-韧转变的最重要因素,并证明了EPDM层厚度的临界值大约在0.05μm左右。 A model was established for predicting the mechanical properties of PP/CaCO3 composite materials using neural network. The relationship between tensile and impact strengths and the structure of PP/CaCO3 composites was built up. The calculated results match the experimental data well,and thus the model is reliable. The model reveals that the distance between the dispersed particles and the thickness of the EPDM layer are the most important factors affecting the brittle-tough transition,and the critical thickness of EPDM layer is about 0.05 μm.
出处 《塑料》 CAS CSCD 北大核心 2005年第6期66-70,共5页 Plastics
基金 国家自然科学基金资助项目(50273017)
关键词 BP网络 高分子复合材料 性能预测 back propagation neural network polymer composite materials property prediction
  • 相关文献

参考文献3

二级参考文献24

  • 1方开泰 马长兴.正交与均匀实验设计[M].北京:科学出版社,2001.144-152.
  • 2Zhao D M, Dong Q M, et al. Structure and strength of the age hardened Cu-Ni-Si alloy[J]. Materials Chemistry and Physics, 2003,79(2) :81 - 86.
  • 3Choi H I.Fabrication of high conductivity copper alloys by rod milling[J]. Journal of Materials Science Letters, 1997,16:1600 - 1602.
  • 4Gao N, Saarivirta E H. Influence of deformation on the age hardening of a phosphorus containing Cu-0.61% Cr alloy [J]. Material Science and Engineering, 2003, A 342:270 - 278.
  • 5Fernee H. Cold worked Cu-Fe-Cr alloys[J]. Journal of Materials and Science, 2001,36: 5497 - 5510.
  • 6张智星 孙春在.模糊神经和软计算[M].西安:西安交通大学出版社,1998.123-156.
  • 7Joines J A, White M W. Improved Generalization Using Robust Cost Function. IEEE/INNS Int Joint Conference of Neural Network[ M]. IEEE Press, 1992,911 - 918.
  • 8Basheer L A. Artificial neural network, computering, design, and application[ J]. Journal of Microbiological Methods, 2000,43:3-31.
  • 9Jakubowicz J, Szlaferek A. J Alloys Compd, 1999; 283:307.
  • 10Kronmoller H, Rieger G, Seeger M, Sun L. J Magn Magn Mater, 1995; 151:193.

共引文献10

同被引文献29

  • 1王吉会,高后秀,郑冀,胡绳荪,盛京.浅谈专业课程教学中的人文教育[J].高等工程教育研究,2005,53(S1):79-81. 被引量:27
  • 2俞江华,王国全,王文一,陈建峰,曾晓飞.纳米CaCO_3/EPO/PP复合材料性能与结构的研究[J].塑料工业,2004,32(11):16-18. 被引量:3
  • 3杨国文.塑料材料[M].成都:成都科技大学出版社,1987.98-116.
  • 4Idoia U, Alba G, Juan J I, et al. Morphology of High Impact Polypropylene Particles [ J ]. Macromolecules, 2005, 38 (2) : 2 795- 2 801.
  • 5Zebarjad S M, Sajjadi S A, Tahani M. Modification of Fracture Toughness of Isotactic Polypropylene with a Combination of EPR and CaCO3 Particles[J]. J. Mater. Process. Technol. , 2005, 175(4) :446 - 451.
  • 6Yu J, Wang G, Chen J, et al. Toughening of Polypropylene Combined with Nanosized CaCO3 and Styrene-ButadieneStyrene[J]. Polym. Eng. Sci., 2007, 47(3):201-206.
  • 7Ma C G, Zhang M Q, Rong M Z. Morphology Prediction of Ternary Polypropylene Composites Containing Elastomer and Calcium Carbonate Nanoparticles Filler [ J ]. J. Appl. Polym. Sci., 2006, 103 : 1 578 - 1 584.
  • 8Zhang L, Li C, Huang R. Toughness Mechanism in Polypropylene Composites: Polypropylene Toughened with Elastomer and Calcium Carbonate [J]. J. Polym. Sci, 2004, 42(9) :1 656- 1 662.
  • 9Samsudin M S F, Ishak Z A M, Jikan S S, et al. Effect of Filler Treatments on Rheological Behavior of Calcium Carbonate and Talc Filled Polypropylene Hybrid Comp [ J ]. J. Appl. Polym. Sci., 2006, 102(6) :5 421 - 5 426.
  • 10Yang K, Yang Q, Li G, et al. Mechanical Properties and Morphologies of Polypropylene with Different Sizes of Calcium Carbonate Particles [ C ]. Polymer Composites, 2006 : 443 - 450.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部