摘要
提出了一种基于指数门限(ET)的端点检测方法.ET法为短时能量的概密函数(PDF)建立起统一的语音和噪声模型,根据当前语音数据的信噪比估计出最优的检测门限,并给出了最优检测门限的指数型公式.在'八六三'大词汇量连续语音数据库上的实验结果表明,ET法具有较好的检测性能,在噪声环境中表现出较好的稳健性,信噪比为0 dB时,检测正确率可达89.5%.在信噪比为0~15dB时,检测正确率要明显高于基本能量法、对数能量聚类法(LEC)以及χ2法等语音检测(VAD)方法.
A new endpoint detection method based on the exponential threshold (ET) is proposed. The probability density function (PDF) of the short-time energy is investigated, and a new consistent mathematical model is built up for the speech and the noise. Then, an optimal detection threshold exponential formula is concluded. Experimental evaluations on “863” program of China across a wide range of SNRs are given. Results show that when the SNR is 0 dB, the accuracy achieves 89.5%, and when the SNR is 0-15 dB, the ET method has good performances than the basic energy, the logarithmic energy clustering (LEC) and χ^2methods.
出处
《数据采集与处理》
CSCD
北大核心
2005年第4期385-389,共5页
Journal of Data Acquisition and Processing
基金
国家高技术研究发展计划("八六三"计划)(2001AA114071)资助项目
关键词
语音识别
语音检测
指数门限
端点检测
speech recognition
voice activity detection
exponential threshold
endpoint detection