期刊文献+

基于诱导向量的CC4神经网络行为研究

Behavior of CC4 Neural Network Based on Deriving Vector
下载PDF
导出
摘要 角分类前向神经网络CC 4可以快速对文本数据进行分类处理。本文在定义二值向量的诱导向量的基础上,给出CC 4神经网络隐层、输出层的权矩阵构造方法的诱导向量分析,并给出CC 4神经网络隐层输出的基本原理、基于泛化距离的隐层权矩阵构造方法的几何解释,以及输出层权矩阵构造的约束条件;揭示了角分类神经网络学习、工作的基本原理。本文为基于实向量输入的快速角分类神经网络的设计提供了借鉴及必要的理论基础。 A feed forward neural network (FFNN) for the corner classification 4 (CC4) can instantaneously classify text data. With the definition of the deriving vector for a binary vector, the deriving vector based analyses for constructions of weight matrixes of the CC4 hidden and output layer are given. The principle for outputs of the CC4 hidden layer, and the geometrical interpretation for the construction of the CC4 hidden weight matrix, and constrains for the construction of the CC4 output weight matrix are also presented. Research conclusions show that the fundamental principle of the learning and the running of FFNN for corner classification provide some references and the academic foundation for designing the new FFNN for corner classification with the real vector as inputs.
出处 《数据采集与处理》 CSCD 北大核心 2005年第4期454-457,共4页 Journal of Data Acquisition and Processing
基金 中国博士后科学基金(2004036463)资助项目 多媒体计算与通信教育部-微软重点实验室科研基金(05071807)资助项目 面向二十一世纪教育振兴计划部分资助项目
关键词 前向神经网络 快速分类 泛化半径 泛化距离 feed forward neural network instant classification generalized radius generalized distance
  • 相关文献

参考文献13

  • 1Brin S, Page L. Anatomy of a large scale hyper textual web search engine[A]. Proc of the Seventh International World Wide Web Conference[C]. Amsterdam: Elsevier Science Publishers B.V., 1998.107~117.
  • 2曾春,邢春晓,周立柱.个性化服务技术综述[J].软件学报,2002,13(10):1952-1961. 被引量:394
  • 3Gudivada V N, Raghavan V V, Grosky W I, et al. Information retrieval on the world wide web[J]. IEEE Internet Computing, 1997,1(5):59~68.
  • 4陈恩红,张振亚,合源一幸,王煦法.基于扩展角分类神经网络的文档分类方法(英文)[J].软件学报,2002,13(5):871-878. 被引量:12
  • 5张振亚,陈恩红,王进,王煦法.RealCC在文本信息检索的个性化推荐中的应用研究[J].数据采集与处理,2004,19(3):338-342. 被引量:3
  • 6Shu B, Kak S. A neural network-based intelligentmetasearch engine[J]. Information Sciences, 1999,120(1):1~11.
  • 7Tang K W, Kak S C. A new corner classification approach to neural network training[J]. Circuits Systems Signal Processing,1998,17(4):459~469.
  • 8Raina P. Comparison of learning and generalization capabilities of the Kak and the back propagation algorithms[J]. Information Sciences 1994,81:261~274.
  • 9Kak S. New algorithms for training feed forwardneural networks[J]. Pattern Recognition Letters,1994,15:295~298.
  • 10Kak S. Better web searches and prediction with instantaneously trained neural networks[J]. IEEE Intelligent Systems, 1999,14(6):78~81.

二级参考文献58

  • 1黄敏超,张育林,冯心.变结构神经网络及其应用[J].控制与决策,1994,9(3):190-194. 被引量:1
  • 2韩小云,刘瑞岩.基于神经网络和模糊综合评判的梁故障诊断研究[J].国防科技大学学报,1996,18(1):17-22. 被引量:8
  • 3韩小云,刘瑞岩.ART-2网络学习算法的改进[J].数据采集与处理,1996,11(4):241-245. 被引量:22
  • 4韩小云 周建平 等.自适应神经网络CHAR故障诊断系统[J].东南大学学报,1997,27(5):36-40.
  • 5(英)肯尼思·法内科尔 曾文曲等(译).分形几何-数学基础及其应用[M].沈阳:东北大学出版社,1991..
  • 6Chang Chiahui. Enabling concept-based relevance feedback for information retrieval on the WWW[J]. IEEE Trans on Knowledge and Data Engineering, 1999,11(4):595~609.
  • 7Arwar. Item-based collaborative filtering recommendation algorithms[A]. ACM Press Proceedings of the 10th International World Wide Web Conference (WWW10)[C]. 2001.285~295.
  • 8Jung S Y. A formal model for user preference[A]. IEEE CS Press, IEEE International Conference on Data Mining (ICDM′02)[C].2002.235~243.
  • 9Mobasher B.Automatic personalization based on web usage mining[J]. Communications of the ACM, 2000,43(8):142~151.
  • 10Shu Bo. A neural network-based intelligent meta-search engine[J]. Information Sciences, 1999,120:1~11.

共引文献406

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部