摘要
角分类前向神经网络CC 4可以快速对文本数据进行分类处理。本文在定义二值向量的诱导向量的基础上,给出CC 4神经网络隐层、输出层的权矩阵构造方法的诱导向量分析,并给出CC 4神经网络隐层输出的基本原理、基于泛化距离的隐层权矩阵构造方法的几何解释,以及输出层权矩阵构造的约束条件;揭示了角分类神经网络学习、工作的基本原理。本文为基于实向量输入的快速角分类神经网络的设计提供了借鉴及必要的理论基础。
A feed forward neural network (FFNN) for the corner classification 4 (CC4) can instantaneously classify text data. With the definition of the deriving vector for a binary vector, the deriving vector based analyses for constructions of weight matrixes of the CC4 hidden and output layer are given. The principle for outputs of the CC4 hidden layer, and the geometrical interpretation for the construction of the CC4 hidden weight matrix, and constrains for the construction of the CC4 output weight matrix are also presented. Research conclusions show that the fundamental principle of the learning and the running of FFNN for corner classification provide some references and the academic foundation for designing the new FFNN for corner classification with the real vector as inputs.
出处
《数据采集与处理》
CSCD
北大核心
2005年第4期454-457,共4页
Journal of Data Acquisition and Processing
基金
中国博士后科学基金(2004036463)资助项目
多媒体计算与通信教育部-微软重点实验室科研基金(05071807)资助项目
面向二十一世纪教育振兴计划部分资助项目
关键词
前向神经网络
快速分类
泛化半径
泛化距离
feed forward neural network
instant classification
generalized radius
generalized distance