期刊文献+

纳米Fe_3O_4/聚苯胺复合粒子的制备及其在交变磁场下的发热性能 被引量:10

SYNTHESIS OF MAGNETITE NANOPARTICLES ENCAPSULATED WITH POLYANILINE AND THEIR INDUCTIVE HEATING PROPERTY IN ALTERNATING CURRENT MAGNETIC FIELD
下载PDF
导出
摘要 用水解沉淀法合成了纳米Fe3O4粒子,并在其悬浮液中原位包覆聚苯胺,制备出纳米Fe3O4/聚苯胺复合粒子.研究了两种纳米粒子在交变磁场下的发热性能,对它们在定向集热治疗肿瘤中的应用前景进行了评价.纳米Fe3O4粒子的粒径为10~30 nm,表面包覆聚苯胺后,复合粒子的粒径为30~50 nm.纳米Fe3O4粒子的比饱和磁化强度为50.05 Am2/kg,矫顽力为10.9 kA/m;纳米Fe3O4/聚苯胺复合粒子的比饱和磁化强度为26.34 Am2/kg,矫顽力为0.在10 mg/mL的生理盐水悬浮液中,在外加交变磁场作用30 min后,纳米Fe3O4粒子悬浮液的温度为63.6℃,纳米Fe3O4/聚苯胺悬浮液的温度为52.4℃,二者均达到了医学上定向集热治疗肿瘤用热籽的发热要求,是很有应用前景的医用纳米材料. The Fe3O4/polyaniline composite nanoparticles with diameters of 30-50 nm were prepared. The Fe3O4 nanoparticles with diameters of 10-30 nm were encapsulated with polyaniline (PANI) by irvsitu polymerization. The inductive heating property of Fe3O4 nanoparticles and Fe3O4/polyaniline composite nanoparticles in an alternating current magnetic field was investigated. The potential of the two kinds of nanoparticles was evaluated for the localized hyperthermia treatment of cancers. The saturation magnetization Ms and coercivity Hc of Fe3O4 nanoparticles are 50.05 emu/g and 137 Oe respectively, the Fe3O4/polyaniline composite nanoparticles, 26.34 emu/g and 0 Oe. Exposed in the alternating current magnetic field for 30 min, the temperatures of physiological salt water suspension containing Fe3O4 nanoparticles or Fe3O4/polyaniline composite nanoparticles are 63.6℃ and 52.4℃ respectively. These two kinds of nanoparticles would be useful as good thermoseeds for the localized hyperthermia treatment of cancers.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2005年第6期80-84,共5页 Acta Materiae Compositae Sinica
基金 北京市科技新星计划资助项目(H020821280120) 中国博士后基金资助项目
关键词 纳米FE3O4粒子 聚苯胺 交变磁场 医用纳米材料 肿瘤治疗 magnetite nanoparticles polyaniline alternating current magnetic field medical nano material cancer therapy
  • 相关文献

参考文献11

  • 1Mornet S, Vekris A, Bonnet J, et al. DNA magnetite nanocomposite materials [J]. Mater Leter, 2000, 42 (3): 183 -188.
  • 2Hai Y, Pai V, Chen C J. Development of magnetic device for cell separation [J]. J Magn Magn Mater, 1999, 194(13):254-261.
  • 3Chen Donghwang, Liao Minhung. Preparation and characterization of YADH-bound magnetic nanoparticles [ J]. J Molecular Catalysis, 2002, 16(5/6): 283-291.
  • 4Torchilin V P. Drug targeting [J]. Europe J Pharmaceutical Sci, 2000, 11(2): 81-91.
  • 5Reimer P, Weiss L R. Development and experimental application of receptor specific MR contrast media [J]. Der Ra-Dialage, 1996, 36(2): 153.
  • 6Chouly C, Pouliquen D, Lucet I, et al. Development of super paramagnetic nanoparticles for MRI effect of particle size, charge and surface nature on biodistribution [J]. J M Croencapsulation, 1996, 13(3): 245-255.
  • 7Moroz P, Jones S K, Gray B N, et al. Magnetic mediated hyperthermia: Current status and future directions [J]. Int J Hyperthermia, 2002, 18: 267-284.
  • 8Chan D C F, Kirpotin D, Bunn P A. Synthesis and evaluation of colloidal magnetic iron oxide for the site specific radio frequency induced hyperthermia of cancer [J]. J Magnetism and Magnetic Mater, 1993, 122(8): 374-379.
  • 9Jordan A, Wust P, Scholz R, et al. Scientific and clinical applications of magnetic carriers [M]. New York: Plenum Press, 1997. 569-575.
  • 10Falk M H, Issels R D. Hyperthermia in oncology [J]. Int J Hyperthermia, 2001, 17 : 1 - 18.

同被引文献162

引证文献10

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部