期刊文献+

Determination of H^+ diffusion coefficient in the course of H^+ response of a W/WO_3 pH electrode

Determination of H^+ diffusion coefficient in the course of H^+ response of a W/WO_3 pH electrode
下载PDF
导出
摘要 A WAVO3 pH electrode was prepared by a method of sol-gel. In order to study the H^+ response dynamic mechanism, the electrochemical impedance spectroscopy (EIS) experiment was conducted. It was found that the H^+ response course is controlled by the H^+ diffusion from the solution to the WO3 film, based on the analysis of EIS spectra. The EIS and potential step method were used to determinate the H+ diffusion coefficient (D) in the course of H^+ response of this WAVO3 electrode, and the values of D calculated by these two method correspond very well, which all are about 10^-19cm^2/s The imposed different potential steps make little effect on the calculation of H^+ diffusion coefficient, and it was found that the limiting Cottrell equation of short elapsed time fits well to the current transient caused by a potential step, based on the analysis of the time constant. A WAVO3 pH electrode was prepared by a method of sol-gel. In order to study the H^+ response dynamic mechanism, the electrochemical impedance spectroscopy (EIS) experiment was conducted. It was found that the H^+ response course is controlled by the H^+ diffusion from the solution to the WO3 film, based on the analysis of EIS spectra. The EIS and potential step method were used to determinate the H+ diffusion coefficient (D) in the course of H^+ response of this WAVO3 electrode, and the values of D calculated by these two method correspond very well, which all are about 10^-19cm^2/s The imposed different potential steps make little effect on the calculation of H^+ diffusion coefficient, and it was found that the limiting Cottrell equation of short elapsed time fits well to the current transient caused by a potential step, based on the analysis of the time constant.
出处 《Rare Metals》 SCIE EI CAS CSCD 2005年第4期351-357,共7页 稀有金属(英文版)
基金 [This work was supported by the Science Foundation of Guangdong province of China (No. 05300370) and the Science Foundation of Foshan University.]
关键词 pH electrode diffusion coefficient dynamic mechanism tungsten oxide SOL-GEL pH electrode diffusion coefficient dynamic mechanism tungsten oxide sol-gel
  • 相关文献

参考文献1

二级参考文献2

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部