期刊文献+

ZK31+0.3Yb镁合金的热力模拟 被引量:8

Thermal mechanical simulation of ZK31+0.3Yb magnesium alloy
下载PDF
导出
摘要 通过热压缩变形实验,利用光学显微镜观察,对ZK31+0.3Yb镁合金变形过程的流变应力和组织演变进行研究。研究结果表明663K/0.1s-1是最佳的变形条件,在此条件下,合金的流变应力低,动态再结晶充分激发,合金的塑性好;当变形温度降至623K和573K时,动态再结晶不能充分激发,合金变形的流变应力明显提高,尤其是573K变形时流变应力达到185MPa;而变形温度提高到723K时,晶界处形成楔形裂纹,合金的塑性差;在663K时变形,尽管应变速率降低至0.001s-1,合金的动态再结晶充分激发,流变应力下降,但变形的进程被减缓;当变速率提高到1.000s-1时,晶粒间的协调变形不能发挥作用,合金的塑性最差。 The flow stress and microstructure evolution of ZK31 +0. 3Yb magnesium alloy were studied through hot compression deformation experiment and optical microscope observation. The results show that the suitable deformation condition is 663 K/0.1 s^-1 , which results in low flow stress and that the good ductility of the alloy is obtained due to the activation of dynamic recrystallization(DRX) of the alloy. When the temperature is decreased to 573 K and 623 K, the flow stress increases obviously due to the inhibited of the DRX, especially, the flow stress increases to 185 MPa when the temperature decreases to 573 K. The wedge cracking initiates at the grain boundary when the temperature increases to 723 K, which causes the poor ductility of the alloy. Although strain rate is decreased to 0. 001 s^-1 , which causes the low stress due to DRX activated sufficiently, the deformation process is slowed down. Increasing the strain rate to 1. 000 s^-1 causes the poorest ductility due to the fracture of compatible deformation between grains.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第6期933-937,共5页 Journal of Central South University:Science and Technology
关键词 镁合金 热力模拟 变形温度 应变速率 动态再结晶 magnesium alloy thermal mechanical simulation deformation temperature strain rate dynamic recrystallization
  • 相关文献

参考文献15

  • 1Sivakesavam O,Rao I S,Praad Y V.Processing map for hot working of as cast magnesium[J].Mater Sci and Tech,1993,19:805-810.
  • 2Ion S E,Humphreys F J.Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium[J].Acta Mater,1982,30:1909-1919.
  • 3Galiyev A,Sitdikov O,Kaibyshev R.Deformation behavior and controlling mechanism for plastic flow of magnesium and magnesium alloy[J].Mater Trans,2003,44:426-435.
  • 4Myshlyaev M M,McQueen H J,Mwembela A,et al.Twining,dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy[J].Mater Sci Eng A,2002,337:121-133.
  • 5Koike J,Kobayashi T,Mukai T,et al.The activity of non-basal slip systems and dynamic recovery at room temperature in fine-gained AZ31B magnesium[J].Acta Mater,2003,51:2055-2065.
  • 6Myers M A,Vhringer O,Lubarda V A.The onset of twining in metals:a constitutive description[J].Acta Mater,2001,49:4025-4039.
  • 7del Valle J A,Pérez-Prado M T,Ruano O A.Texture evolution during large-strain hot rolling of the MgAZ61 alloy[J].Mater Sci Eng A,2003,355:68-78.
  • 8Charghouri M A,Weatherly G C,Embury J D,et al.Study of mechanical properties of Mg-7.7%Al by neutron diffraction[J].Phil Mag,1998,76A:1671-1695.
  • 9YE Cheng-wu,LIU Zhi-yi,ZHANG Kun,et al.Twinning during hot compression deformation of ZK31+0.3Yb magnesium alloy[J].Transaction of Nonferrous Metals Society of China,2005,15(4):884-888.
  • 10Yang X Y,Miura H,Sakai T.Dynamic evolution of new grains in magnesium alloy AZ31 during hot deformation[J].Mater Trans,2003,44:197-203.

同被引文献88

引证文献8

二级引证文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部