期刊文献+

TC21新型钛合金的超塑性拉伸行为及组织演化 被引量:30

The Superplastic Tensile Deformation Behavior and Structure Evolution of New Type Titanium Alloy-TC21
下载PDF
导出
摘要 研究了新型高强高韧高损伤容限TC21钛合金的超塑性拉伸变形行为及组织演化规律。结果表明,TC21合金具有良好的超塑性和较宽的超塑性温度-应变速率范围(720℃~960℃,5.5×10^(-5)/s~1.1×10^(-2)/s)。在最佳超塑性条件下(900℃,3.3×10^(-4)/s),平均延伸率达到980%,最高延伸率达到1309%,平均流动应力仅为19.5 MPa。在超塑性拉伸过程中,试样变形区将发生明显的动态再结晶,使原始条状初生α相破断、细化和等轴化,促进超塑性的提高。随着变形温度提高、变形量增大和变形时间加长,将发生聚集再结晶,使再结晶α相合并长大成不规则的大片状,引起显微组织明显粗化,断口表面起伏增加。在最佳超塑性条件下,断口中形成了大而深的空洞,晶界滑动和晶间断裂特征明显。 The superplastic tensile deformation behavior and the structure evolution law of high strength, high toughness and high damage-tolerant titanium alloy-TC21 have been investigated. The experimental results show that TC21 titanium alloy has good superplasticity and wider temperature-strain rate range (720℃-960℃, 5.5 × 10^-5/s-1.1×10^-2/s). On the optimal superplastic condition (900℃, 3.3 × 10^-4/s), the average elongation is 980%, the maximum elongation is 1309%, however, the average flow stress is only 19.5 MPa. During the superplastic tensile deformation, the dynamic recrystallization occurs in deformation zone of specimen and the original strip primary a phase is cracked, refined and equiaxed, so that the superplasticity can be improved. With increasing of temperature and deformation amount and deformation time, collective recrystallization will occur, recrystallization a phase will merge and grow up into irregular big strip, causing obvious coarsing of microstructure and increasing of the undulation of fracture surface. The deep and large cavities are formed on fracture surface and grain boundary sliding and intergranular fracture characteristic is obvious on the optimal superplastic deformation condition.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2005年第12期1935-1939,共5页 Rare Metal Materials and Engineering
关键词 TC21钛合金 超塑性 组织演化 再结晶 晶间断裂 TC21 titanium alloy superplasticity structure evolution recrystallization intergranular fracture
  • 相关文献

参考文献8

  • 1曹春晓.选材判据的变化与高损伤容限钛合金的发展[J].金属学报,2002,38(z1):4-11. 被引量:104
  • 2Boyer P R.Materials Science and Engineering A[J],1996,213(1~2):103.
  • 3Russo P A.Development of a 900 °F Titanium Alloy[R].Technical Report AFML-TR-70-125,1970.
  • 4QuHenglei(曲恒磊) ZhaoYongqing(赵永庆) ZhuZhishou(朱知寿)etal.[P].Chinese Patent[P].No:03105965.1.2003.
  • 5赵永庆,曲恒磊,冯亮,杨海瑛,李辉,张颖楠,郭红超,黄定坤.高强高韧损伤容限型钛合金TC21研制[J].钛工业进展,2004,21(1):22-24. 被引量:119
  • 6Meier M L,Lesuer D R,Mukherjee A K.Materials Science & Engineering A [J],1992,154(2):165.
  • 7Sergueeva A V,Stolyarov V V,Valiev R Z et al.Materials Science and Engineering A[J],2002,323(1~2):318.
  • 8Prasad B K,Patwardhan A K,Yegneswaran A H.Journal of Materials Engineering Performance[J],2000,9(6):688.

二级参考文献18

  • 1曹春晓.选材判据的变化与高损伤容限钛合金的发展[J].金属学报,2002,38(z1):4-11. 被引量:104
  • 2曲恒磊 赵永庆 朱知寿 等.1种高强韧钛合金及其加工方法[P].中国国防专利:03105965 1.2003.
  • 3[3]吴学仁主编.飞机结构金属材料力学性能手册,第二卷(损伤容限).北京:航空工业出版社,1996
  • 4[4]Pearson H S, Pachman P F. Fracture Prevention and Control. Calif. : Los Angeles, 1972:21
  • 5[5]Tuppor N G. Fracture Prevention and Control. Calif. :Los Angeles, 1972:159
  • 6[8]Rolfe S T. ASM Seminar on Fracture Control. Philadelphia: 1970
  • 7[9]Shults J M. SAE 730884. 1973
  • 8[13]Journal of Aircraft, 1974; 3
  • 9[14]AMS 4905A, U.S.A: Society of Automotive Engineers,1988
  • 10[15]Ferguson R R, Berryman R G. AFML-TR-76-137, vol.1.Rockwell International: Los Angeles, 1976

共引文献203

同被引文献273

引证文献30

二级引证文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部