摘要
An approach is presented to characterize the stress response of workpiece in hard machining, accounted for the effect of the initial workpiece hardness, temperature, strain and strain rate on flow stress. AISI H13 work tool steel was chosen to verify this methodology. The proposed flow stress model demonstrates a good agreement with data collected from published experiments. Therefore, the proposed model can be used to predict the corresponding flow stress-strain response of AISI H13 work tool steel with variation of the initial workpiece hardness in hard machining.
An approach is presented to characterize the stress response of workpiece in hard machining, accounted for the effect of the initial workpiece hardness, temperature, strain and strain rate on flow stress. AISI H13 work tool steel was chosen to verify this methodology. The proposed flow stress model demonstrates a good agreement with data collected from published experiments. Therefore, the proposed model can be used to predict the corresponding flow stress-strain response of AISI H13 work tool steel with variation of the initial workpiece hardness in hard machining.
基金
supported by the Jiangxi Provincial Natural Science Foundation of China(No.550067)
Jiangxi Provincial Education Commission Foundation(No.2005-26).