期刊文献+

广义bent序列的构造 被引量:2

Construction of generalized binary bent sequences
下载PDF
导出
摘要 首先给出了一些二次bent函数在2nF上的迹函数的表示,考虑了有限域2nF(n为偶数)上Gold函数1(21)trnxi+,1≤i≤n?1,在F2上的线性组合,添加一项22211()nntrx+后所得函数构成bent函数的充分必要条件,类似于Khoo等人给出的结果,可以通过计算多项式的最大公因式来验证这个条件,并把这个结论推广到Fpn(n为偶数,p为奇素数)的情形。最后利用得到的结果以及Dobbertin等人构造的Niho型bent函数构造了新的广义bent序列。 Trace presentations of some twice degree bent functions were presented. A sufficient and necessary condition was derived to determine whether the sum of the combinations of Gold functions, tr1^n (x^2i+1), 1≤i≤n - 1, over finite fields F2^n (n be even) and another term tr1n/2+1(x2n/2+1)was bent function. Similar to the result given by Khoo et al., the condition can be verified by a polynominal GCD computation. A similar result is also hold in the case Fp^n(n be even, p be oddprime). Using the constructed bent functions and Niho type bent functions given by Dobbertin et al., many new generalized binary bent sequences are obtained.
出处 《通信学报》 EI CSCD 北大核心 2005年第12期19-23,29,共6页 Journal on Communications
基金 国家自然科学基金资助项目(60373059) 教育部博士点基金资助项目(20040013007) 中科院信息安全国家重点实验室开放基金资助项目
关键词 广义bent序列 BENT函数 有限域 generalized bent sequences bent functions finite fields
  • 相关文献

参考文献12

  • 1ROTHAUS O S.On bent functions[J].Jouranl of CombinatorialTheory A,1976,20:300-305.
  • 2MCWILLIAMS F J,SLOANE N J A.Theory of Error-Correcting Codes[M].North-Holland,1997.
  • 3温巧燕 钮心忻 杨义先.密码学中的布尔函数[M].北京:科学出版社,2000..
  • 4OLSEN J D,SCHOLTZ R A,WELCH L R.Bent-function sequences[J].IEEE Trans Inform Theory,1982,IT28(11):858-864.
  • 5NO J S,GIL G M,SHIN D J.Generalized construction of binary bent sequences with optimal correlation property[J].IEEE Trans Inform Theory,2003,49(7):1769-1780.
  • 6YOUSSEF A M,GONG G Hyper-bent functions[A].EUROCRYPT2001[C].LNCS 2045,2001.406-419.
  • 7KIM S H,GIL G M,KIM K H,et al.Generalized bent functions constructed from partial spreads[A].IEEE International Symposium on Inferences Theory[C].2002.41-47.
  • 8KHOO K,GONG G,STISON D R.A new characterization of Gold-like seqnences[A].IEEE International Symposium on Information Theory (ISIT)[C].Lausanne,Switzerland,2002,181.
  • 9DOBBERTIN H,LEANDER G.A survey of some recent results on bent functions[A].Sequences and Their Applications(SETA)[C].LNCS 3486,Springer-Verlag,2005.1-29.
  • 10CARLET C.More correlation-immune resilient functions over Galoisfields and Galois rings[A].EUROCRYPT97[C].Advances in Cryptology,Lecture Notes in Computer Science 1233,1997.422-433.

共引文献3

同被引文献22

  • 1王劲松,戚文峰.Bent序列和Gold-like序列的构造[J].电子与信息学报,2006,28(1):80-85. 被引量:4
  • 2王劲松,戚文峰.Bent序列簇的迹表示[J].通信学报,2006,27(1):8-13. 被引量:2
  • 3柯品惠,张劼,温巧燕.Bent序列簇的迹表示的进一步研究[J].通信学报,2007,28(5):118-121. 被引量:1
  • 4Golomb S W,Gong G.Signal design for good correlation:for wireless communication,cryptography and radar[M].New York:Cambridge University Press,2005.
  • 5Helleseth T,Knmar P V.Sequences with low correlation[A].Pless V S,Huffman W C.Handbook of Coding Theory[C].Netherlands:North-Holland,1998,Ⅱ:1765-1853.
  • 6Olsen J D,Scholtz R A,Welch L R.Bent-function sequences[J].IEEE Trans.Infor.Theory,1982,28(6):858-864.
  • 7Knmar P V,Scholtz R A.Bounds on the linear span of bent sequences[J].IEEE Trans.Infor.Theory,1983,29(6):854-862.
  • 8No J S,Gil G M,Shin D J.Generalized construction of binary Bent sequences with optimal correlation property[J].IEEE Trans.Infor.Theory,2003,49(7):1769-1780.
  • 9No J S,Kumar P V.A new family of binary pseudorandom sequences having optimal periodic correlation properties and large linear span[J].IEEE Trans.Infor.Theory,1989,35(2):371-379.
  • 10Shin D J,No J S.Extended binary bent sequences with optimal correlation and balance properties[A].Atsuko Miyaji,Proceedings of 2003 ISIT[C].Janpan:Yokohama,2003:406-406.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部