摘要
首先给出了一些二次bent函数在2nF上的迹函数的表示,考虑了有限域2nF(n为偶数)上Gold函数1(21)trnxi+,1≤i≤n?1,在F2上的线性组合,添加一项22211()nntrx+后所得函数构成bent函数的充分必要条件,类似于Khoo等人给出的结果,可以通过计算多项式的最大公因式来验证这个条件,并把这个结论推广到Fpn(n为偶数,p为奇素数)的情形。最后利用得到的结果以及Dobbertin等人构造的Niho型bent函数构造了新的广义bent序列。
Trace presentations of some twice degree bent functions were presented. A sufficient and necessary condition was derived to determine whether the sum of the combinations of Gold functions, tr1^n (x^2i+1), 1≤i≤n - 1, over finite fields F2^n (n be even) and another term tr1n/2+1(x2n/2+1)was bent function. Similar to the result given by Khoo et al., the condition can be verified by a polynominal GCD computation. A similar result is also hold in the case Fp^n(n be even, p be oddprime). Using the constructed bent functions and Niho type bent functions given by Dobbertin et al., many new generalized binary bent sequences are obtained.
出处
《通信学报》
EI
CSCD
北大核心
2005年第12期19-23,29,共6页
Journal on Communications
基金
国家自然科学基金资助项目(60373059)
教育部博士点基金资助项目(20040013007)
中科院信息安全国家重点实验室开放基金资助项目