期刊文献+

基于复合正交神经网络的灰色PID控制 被引量:3

Grey PID Control Based on a Compound Orthogonal Neural Network
下载PDF
导出
摘要 结合传统反馈控制方法和灰色预测控制的预测控制器已在控制系统中获得了成功的应用。由于复合正交神经网络具有学习算法简单、收敛速度快,有逼近线性或非线性函数的优良特性。与灰色预测方法相比,神经网络预测精度高,且误差可控,如果把神经网络作为灰色预测器,建立一种灰色预测控制,那么就会在控制系统中获得良好的控制性能。为此,提出一种结合传统的PID控制和神经网络灰色预测补偿的灰色PID控制器,可对系统进行在线灰色估计和控制,由复合正交神经网络对不确定部分建立的灰色预测模型,可根据系统的参数变化来自动调节预测补偿值,使系统响应具有适应性。仿真结果表明,与传统的PID控制方法相比,该控制器可获得更为优良的动态性能和鲁棒性。 The grey prediction control of traditional feedback control combined with grey prediction control is successfully applied to the control systems. Compared with grey prediction, the neural network has high prediction accuracy and ean control the prediction error because the compound orthogonal neural network has a simple algorithm, high - speed convergence of learning process, and excellent characteristics in the linear or nonlinear accurate approximation. If the neural network is treated as the grey predictor to form a grey prediction control, it will get good control performances in the control systems. Therefor, traditional PID control and grey prediction compensation of a neural network are integrated together to build a grey PID controller. It obtains on - line grey prediction and control. The grey prediction model built by a compound orthogonal neural network in the undetermined parts of system ean automatieally adjust the compensation value of grey prediction according to changing parameters, which makes the controller adaptive to the response of systems. Simulation results show that this controller can achieve better dynamic performance and robustness than that of traditional PID control.
作者 叶军
出处 《计算机仿真》 CSCD 2005年第12期121-123,共3页 Computer Simulation
基金 浙江省自然科学基金资助项目(M603070)
关键词 复合正交神经网络 灰色预测 比例-积分-微分控制器 预测控制器 Compound orthogonal neural network Grey prediction PID controller Prediction controller
  • 相关文献

参考文献3

二级参考文献4

共引文献54

同被引文献9

  • 1Deng J L. Control problem of grey systems [J]. System and Control Letters, 1982, 1(5):288~294.
  • 2Guo Yifan. The Influence of variation of modeling data on parameters of GM(1,1) model [J]. The Journal of Grey System, 2004,(1): 29~34.
  • 3邓聚龙.灰理论基础[M].华中理工大学出版社,2003.
  • 4邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,2003..
  • 5DENG J L.Control Problem of Grey Systems[J].System and Controlletters,1982,1 (5):288-294.
  • 6GUO Yi-fan.The Influence of Variation of Modeling Data on Parameters of GM (1,1) Model[J].The Journal of Grey System,2004,1:29-34.
  • 7GUO Yi-fan.The influence of variation of modeling data on parameters of GM(1,1) model[J].The Journal of Grey System,2004(1):29-34.
  • 8刘永寿,支希哲,王三舟,顾致平,朱西平.转子系统振动的灰色预测优化控制研究[J].机械科学与技术,2004,23(1):21-24. 被引量:8
  • 9张广立,付莹,杨汝清.一种新型自调节灰色预测控制器[J].控制与决策,2004,19(2):212-215. 被引量:28

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部