期刊文献+

基于偏最小二乘法与支持向量机的人脸识别 被引量:5

Face Recognition Based on Partial Least Squares and Support Vector Machine
下载PDF
导出
摘要 该文认为在人脸识别中,偏最小二乘回归方法作为一种新的降维方法,在处理小样本问题时具有明显优势,而主元分析方法作为一种传统的降维方法在选择分量时没有考虑类信息,因而有可能忽略掉重要的分类信息。支持向量机(SVM)模式识别方法具备良好的分类性能和鲁棒性。该文提出了一种基于偏最小二乘与支持向量机的人脸识别方法。利用偏最小二乘回归分析对人脸图像进行降维和特征提取,再利用支持向量机对特征向量进行分类识别。ORL人脸库的仿真结果证明偏最小二乘回归方法比主元分析方法更有效。 The paper considers partial least squares (PLS) as a new dimension reduction technique for the feature vector to overcome the small sample size problem in face recognition. Principal component analysis (PCA), a conventional dimension reduction method selects the components with maximum variability, irrespective of the class information. So PCA does not necessarily extract features that are important for the discrimination of classes. Support Vector Machine (SVM) is a popular discriminant method for the very purpose of achieving high separability between the different patterns in whose classification one is interested with good classification and robust performance. This paper proposes a face recognition method based on PLS and SVM. The PLS is used to reduce the dimension and extract the feature, then the SVM is used for classification. The experimental results on ORL databases show that PLS is to be preferred over PCA when classification is the goal and dimension reduction is needed.
作者 楼安平 杨新
出处 《计算机仿真》 CSCD 2005年第12期166-168,共3页 Computer Simulation
关键词 人脸识别 偏最小二乘 支持向量机 Face recognition Partial least squares Support vector machine
  • 相关文献

参考文献6

  • 1刘青山,卢汉清,马颂德.综述人脸识别中的子空间方法[J].自动化学报,2003,29(6):900-911. 被引量:117
  • 2M Turk,A Pentland,Eigen faces for recognition[J].J.Cognitive Neurosci.3,1991:71-86.
  • 3高惠璇.两个多重相关变量组的统计分析(2)[J].数理统计与管理,2002,21(2):60-64. 被引量:27
  • 4D V Nguyen,D M Rocke.Tumor classi3cation by partial least squares using microarray genee xpression data[J].Bioinformatics,2002,18:39-50.
  • 5H Wold.Partial least squares in encyclopedis of statistical sciences[M].New York:John Wiley &Ston,1985.581-591.
  • 6Jian Li.A Comparison of Subspace Analysis for Face Recognition[M].ICASSP,2003.

二级参考文献70

  • 1Hjelmas E, Low B K. Face detection: A survey. Journal of Computer Vision and Image Understanding, 2001, 83(3) : 236-274.
  • 2Yang M H, Ahuja N, Kriegman D. Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1): 34-58.
  • 3Toyama K. Prolegomena for robust face tracking. MSR- Tech-Report-98-65, Microsoft, 1998.
  • 4Samal A, lyengar P. Automatic recognition and analysis of human faces and facial expressions: A survey. Pattern recognition, 1992, 25(1) : 65--77.
  • 5Zhao W, Chellappa R, Rosenfeld A, Phillips P J. Face recognition- A literature survey. CS-Tech Report-4167, University of Maryland, 2000.
  • 6Zhou J, Lu C Y, Zhang C S, Li Y D. A survey of face recognition. Acta Electronica Sinica, 2000, 28(4) : 102--106(in Chinese).
  • 7Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of faces: A survey. Proceedings of the IEEE,1995, 83(5): 705--740.
  • 8Bledsoe W. Man-machine facial recognition. Tech Report PRI-22, Panoramic Research Inc., Palo Alto, CA, 1966.
  • 9Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs Fisherfaee: Recognition using class special linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711-720.
  • 10Zhao W, Chellappa R, Krishnaswamy A. Discriminant analysis of principal components for face recognition. In:Proceedings of International Conference on Automatic Face and Gesture Recognition, Japan: Nara, 1998. 336-341.

共引文献141

同被引文献63

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部