期刊文献+

熵(Ⅱ) 被引量:1

Entropy(Ⅱ)
下载PDF
导出
摘要 介绍了解决遍历理论经典问题的Kolmogorov熵,以及为研究拓扑动力系统而产生的拓扑熵等概念,进而引导读者对这一引人入胜的领域去进行研究. In most cases, the degree of indefiniteness in an indefinite problem can be described mathematically. The mathematical measure of the indefiniteness is entropy, established to solved the classic problem of the in an indefinite problem can be described mathe- called entropy. This paper discusses Kolmogorov ergodic the topological dynamical system. The purpose of this paper is this area. theory, and topology entropy, advanced to study to encourage readers to make further studies in
作者 钱小吾
出处 《洛阳大学学报》 2005年第4期17-23,共7页 Journal of Luoyang University
关键词 Kolmogorov熵 拓扑熵 entropy Kolmogorov entropy topological entropy
  • 相关文献

参考文献5

  • 1钱小吾.熵(Ⅰ)[J].洛阳大学学报,2004,19(4):12-18. 被引量:2
  • 2Andronov A A,Leontovich E A,Gordon I I,Maier A G.Qualitative theory of second-order dynamic systems [M].John Wiley & Sons,1971.
  • 3Dankner A.Axiom a dynamicl systems,cycles and stability[J].Topology,1980,19(2).
  • 4Dumortier F,RodriguesP R.Roussarie R.Germs of diffeomorphisms in the plane[J].Lecture Notes in Math(902),1980.
  • 5Katok A.Lyapunov exponents,entropy and periodic orbits for diffeomorphisms[J].Pub Math(IHES),1980,51.

二级参考文献3

  • 1Andronov A A, Leontovich E A, Gordon I I, Maier A G. Qualitative theory of second-order dynamic systems [M]. New York:John Wiley & Sons, 1971.
  • 2Bo Wen R. On axiom a diffeomorphisms[R]. CBMS35, 1977.
  • 3Dankner A. A dynamicl systems, cycles and stability[J]. Topolgy, 1980, 19.

共引文献1

同被引文献8

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部