期刊文献+

求解非线性最优化问题的序列线性方程组算法 被引量:4

Sequential Systems of Linear Equations Algorithm for the Solution of Nonlinear Optimization Problems
下载PDF
导出
摘要 序列二次规划(SQP)算法是目前公认的求解非线性约束优化问题的最有效的算法之一。但是目前SQP算法存在两个重要问题:(1)每步需要求解一至两个二次规划子问题以得到迭代方向,计算工作量大,难以应用于大规模问题;(2)迭代过程中产生的二次规划子问题可能无解,使运算过程中断。尽管可用其他措施重新定义迭代方向,但必然增加算法的复杂性,增大计算工作量,理论证明也不完善。文中介绍的序列线性方程组方法就是针对SQP算法的缺点而提出的。理论分析和数值实验均表明,这种算法具有迭代时间少,收敛速度快等优点,可以用来求解大规模的非线性优化问题。 Sequential Quadratic Programming (SQP) Algorithm is one of the most effective methods for solving nonlinear constrained optimization problems. However, there are still two main defults existing in current SQP algorithm. (1) At each iteration, an SQP algorithm need to solve one or two quadratic programs to obtain the search direction, which is much time-consuming and not fit for large-scale problems; (2) The quadratic subprogram generated during the iteration may have no solution, which will break out the procedure; Although we can redefine the search direction using other strategy, it is bound to increase the complexity of the algorithm and the computation amount; Moreover, the proof of convergence is not complete either. The Sequential Systems of Linear Equations (SSLE) method introduced in this paper is mainly to overcome the above two defaults of SQP method. Theoretical analysis and numerical experiments show that this kind of method is time-saving and has rapid convergence rate, which is much fit for the solution of large-scale optimization problems.
出处 《山东科技大学学报(自然科学版)》 CAS 2005年第4期1-6,共6页 Journal of Shandong University of Science and Technology(Natural Science)
基金 国家自然科学基金资助项目(10571109)
关键词 约束优化问题 序列线性方程组算法 序列二次规划算法 算法收敛性 constrained optimization SSLE method SQP method convergence of the algorithm
  • 相关文献

参考文献17

  • 1E.R.Panier,A.L.Tits,J.N.Herskovits.A QP - free,globally convergent,locally superlinearly convergent algorithm for inequality constrained optimization [ J ].SIAM J.on Control & Optim.,1988,26:788-811.
  • 2高自友,吴方,赖炎连.非线性最优化一个超线性收敛的序列方程组方法[J].科学通报,1994,39(9):774-777. 被引量:8
  • 3Z.Gao,G.He,F.Wu.Algorithm of sequential systems of linear equation for nonlinear optimization problems,Part Ⅰ- Inequality constrained problems[R].Technical Report 94 - 31,Institute of Applied Mathematics,Academia Sinica,Beijing 100080,China,1994.
  • 4H.Qi,L.Qi.A new Qp- free globally convergent,locally superlinearly convergent algorithm for inequality constrained optimization[J ].SIAM Journal on Optimization,2000,11:113- 132.
  • 5Z.Gao,G.He,F.Wu.Algorithm of sequential systems of linear equations for nonlinear optimiza-tion problemsgeneral constrained problems [ J ].Applied Mathematics and Computation,2004,147:211- 226.
  • 6Z.Gao,G.He,F.Wu.Sequential systems of linear equations algorithm for nonlinear optimiza-tion problems with general constraints[J ].J.O.T.A.,1997,95,(2):371 - 397.
  • 7L.Qi and H.Y.Jiang.Semismooth Karush-Kuhn-Tucker equations and convergence analysis of Newton and Quasi-Newton methods for solving these equations[J ].Mathematics of Operations Research,1997,22 (2):301- 325.
  • 8Donghui Li,Nobuo Yamashita and Masao Fukushima,A nonsmooth equation based BFGS method for solving KKT systems in mathematical programming[J ].J.O.T.A.,2001,109(1) :123- 167.
  • 9Z.Gao,G.He,F.Wu.Sequential systems of linear equations algorithm with arbitrary initial point[J].Science in China (Series A),1997,27(1):24-33.
  • 10F.Facchinei,S.Lucidi.Quadratically and superlinearly convergent algorithm for the solution of inequality constrained minimization problems [ J].J.O.T.A.,1995,85:265-289.

二级参考文献1

  • 1D. Q. Mayne,E. Polak. Feasible directions algorithms for optimization problems with equality and inequality constraints[J] 1976,Mathematical Programming(1):67~80

共引文献7

同被引文献39

  • 1张利彪,周春光,刘小华,马铭.粒子群算法在求解优化问题中的应用[J].吉林大学学报(信息科学版),2005,23(4):385-389. 被引量:39
  • 2王书亭,王战江.粒子群优化算法求解非线性问题的应用研究[J].华中科技大学学报(自然科学版),2005,33(12):4-7. 被引量:13
  • 3雍龙泉.二次规划中K-T点的复杂性[J].喀什师范学院学报,2006,27(3):8-9. 被引量:2
  • 4谭玲,段复建,朱志斌.二次规划问题的一个全局收敛的内点型算法[J].桂林电子科技大学学报,2007,27(1):64-67. 被引量:2
  • 5Pinon S. Constrained predictive control of a greenhouse [ J ]. Computers and Electronics in Agriculture, 2005,49 (3) :317 - 329.
  • 6Chen Wenhua, Gawthrop Peter J. Constrained predictive pole-placement control with linear models [ J ]. Automatica, 2006,42 (4) :613 - 618.
  • 7Bequette B Wayne. Process control modeling, design, and simulation [ M ]. New Jersey: Prentice Hall, 2002.
  • 8希梅尔布劳DM.实用非线性规划[M].张义粲,等译.北京:科学出版社,1981.
  • 9Clerc Maurice, Kennedy James. The particle swarm-explosion, stability and convergence in a multidimensional complex space[ J]. IEEE Transaction on Evolutionary Computer, 2002,6( 1 ) : 58 -73.
  • 10Bazaraa M.S.and Shetty C.M..Nonlinear Programming:Theoryand Algorithms[M].Wiley,New York,1979.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部