期刊文献+

边坡深层抗滑稳定动力分析 被引量:1

Dynamic analysis of side slope stability against deep sliding
下载PDF
导出
摘要 岩体结构面在循环加载条件下的力学特性直接关系到上部结构的稳定安全。本文结合边坡动力抗滑稳定工程算例,采用有限元接触分析方法,对岩休结构面的理想弹塑性模型、简化非线性模型、考虑剪胀和磨损等现象的复杂非线性模型的计算结果进行了对比分析。接触面的理想弹塑性模型低估了接触面的变形能力,计算出的位移偏小,屈服区范围偏大,安全系数偏小。简化非线性模型的刚度随变形的增加而减少,增强了接触面的变形能力,计算出的位移增大,屈服区范围偏小,安全系数偏大。天然岩体结构面具有峰值剪切和剪胀特性,在循环加载条件下,峰值摩擦角、剪胀角会逐步磨损,考虑这些复杂特性后,模型计算结果处于理想弹塑性模型和简化非线性模型之间,更准确地模拟了接触面的受力变形特性。 Mechanical characteristics of rock joints and interfaces under cyclic loading are important to stability safety of upper structure. For an example, three kinds of models are compared in dynamic stability analysis against sliding. Finite element method is used and rock structural surfaces are simulated with contact elements. The sliding security is evaluated by displacements, yield region of contact surface and point safety coefficient. Elastic-perfect plastic model underestimate the deformation capability of contact surface, relative displacement obtained is less than real value, yield region is on the high side, and safety coefficient is on the low side. In simplified nonlinear model, contact stiffness decreases when shear relative displacement increases, deformation capability and safety coefficient are overestimated. In complex nonlinear model, the characters of peak friction and dilation wear under cyclic load of natural rock joints are considered, and the numerical analysis result lies between last two models.
出处 《水力发电学报》 EI CSCD 北大核心 2005年第6期9-13,共5页 Journal of Hydroelectric Engineering
关键词 岩土力学 滑动稳定 动力分析 本构关系 边坡 geotechnical mechanics stability against sliding dynamic analysis constitutive relation side slope
  • 相关文献

参考文献8

  • 1Goodman R E. Introduction to rock mechanics[M]. Hoboken, NJ:John Wiley & Sons, 1989.
  • 2Zaman M M, Desai C S, Drumm E C. Interface model for dynamic soil-structure interaction [J]. Journal of Geotechnical Engineering, 1984,110:1257 ~ 1273.
  • 3Jing L, Nordlund E, Stephansson O. A 3-D constitutive model for rock joints with anisotropic friction and stress dependency in shear stiffness [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994,31(2): 173~178.
  • 4Huang T H, Chang C, Chao C Y. Experimental and mathematical modeling for fracture of rock joint with regular asperities [J]. Engineering fracture mechanics, 2002,69:1977 ~ 1996.
  • 5Souley M, Homand F, Amadei B. An extension to the Saeb and Amadei constitutive model for rock joints to include cyclic loading paths [J]. International Journal of Rock Mechanics and mining Sciences & Geomechanics Abstracts,1995,32(2): 101~109.
  • 6Qiu X, Plesha M E, Huang X, et al. An investigation of the mechanics of rock joints-part Ⅱ: analytical investigation [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993,30(3) :271~287.
  • 7Lee H S, Park Y J, Cho T F, et al. Influence of asperity degradation on the mechanical behavior of rough rock joints under cyclic shear loading [J]. International journal of rock mechanics and mining sciences, 2001,38: 967 ~ 980.
  • 8Boulon M, Armand G, Hoteit N, et al. Experimental investigations and modeling of shearing of calcite healed discontinuities of granodiorite under typical stresses [J]. Engineering Geology, 2002,64:117~133.

同被引文献12

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部